177 resultados para Currency forecast errors
Resumo:
In this paper we introduce a new testing procedure for evaluating the rationality of fixed-event forecasts based on a pseudo-maximum likelihood estimator. The procedure is designed to be robust to departures in the normality assumption. A model is introduced to show that such departures are likely when forecasters experience a credibility loss when they make large changes to their forecasts. The test is illustrated using monthly fixed-event forecasts produced by four UK institutions. Use of the robust test leads to the conclusion that certain forecasts are rational while use of the Gaussian-based test implies that certain forecasts are irrational. The difference in the results is due to the nature of the underlying data. Copyright © 2001 John Wiley & Sons, Ltd.
Resumo:
We analyse by simulation the impact of model-selection strategies (sometimes called pre-testing) on forecast performance in both constant-and non-constant-parameter processes. Restricted, unrestricted and selected models are compared when either of the first two might generate the data. We find little evidence that strategies such as general-to-specific induce significant over-fitting, or thereby cause forecast-failure rejection rates to greatly exceed nominal sizes. Parameter non-constancies put a premium on correct specification, but in general, model-selection effects appear to be relatively small, and progressive research is able to detect the mis-specifications.
Resumo:
We consider methods of evaluating multivariate density forecasts. A recently proposed method is found to lack power when the correlation structure is mis-specified. Tests that have good power to detect mis-specifications of this sort are described. We also consider the properties of the tests in the presence of more general mis-specifications.
Resumo:
A number of studies have addressed the relationship between intra-personal uncertainty and inter-personal disagreement about the future values of economic variables such as output growth and inflation using the SPF. By making use of the SPF respondents' probability forecasts of declines in output, we are able to construct a quarterly series of output growth uncertainty to supplement the annual series that are often used in such analyses. We also consider the relationship between disagreement and uncertainty for probability forecasts of declines in output.
Resumo:
This article examines the ability of several models to generate optimal hedge ratios. Statistical models employed include univariate and multivariate generalized autoregressive conditionally heteroscedastic (GARCH) models, and exponentially weighted and simple moving averages. The variances of the hedged portfolios derived using these hedge ratios are compared with those based on market expectations implied by the prices of traded options. One-month and three-month hedging horizons are considered for four currency pairs. Overall, it has been found that an exponentially weighted moving-average model leads to lower portfolio variances than any of the GARCH-based, implied or time-invariant approaches.
Resumo:
Understanding the sources of systematic errors in climate models is challenging because of coupled feedbacks and errors compensation. The developing seamless approach proposes that the identification and the correction of short term climate model errors have the potential to improve the modeled climate on longer time scales. In previous studies, initialised atmospheric simulations of a few days have been used to compare fast physics processes (convection, cloud processes) among models. The present study explores how initialised seasonal to decadal hindcasts (re-forecasts) relate transient week-to-month errors of the ocean and atmospheric components to the coupled model long-term pervasive SST errors. A protocol is designed to attribute the SST biases to the source processes. It includes five steps: (1) identify and describe biases in a coupled stabilized simulation, (2) determine the time scale of the advent of the bias and its propagation, (3) find the geographical origin of the bias, (4) evaluate the degree of coupling in the development of the bias, (5) find the field responsible for the bias. This strategy has been implemented with a set of experiments based on the initial adjustment of initialised simulations and exploring various degrees of coupling. In particular, hindcasts give the time scale of biases advent, regionally restored experiments show the geographical origin and ocean-only simulations isolate the field responsible for the bias and evaluate the degree of coupling in the bias development. This strategy is applied to four prominent SST biases of the IPSLCM5A-LR coupled model in the tropical Pacific, that are largely shared by other coupled models, including the Southeast Pacific warm bias and the equatorial cold tongue bias. Using the proposed protocol, we demonstrate that the East Pacific warm bias appears in a few months and is caused by a lack of upwelling due to too weak meridional coastal winds off Peru. The cold equatorial bias, which surprisingly takes 30 years to develop, is the result of an equatorward advection of midlatitude cold SST errors. Despite large development efforts, the current generation of coupled models shows only little improvement. The strategy proposed in this study is a further step to move from the current random ad hoc approach, to a bias-targeted, priority setting, systematic model development approach.
Resumo:
Radar refractivity retrievals can capture near-surface humidity changes, but noisy phase changes of the ground clutter returns limit the accuracy for both klystron- and magnetron-based systems. Observations with a C-band (5.6 cm) magnetron weather radar indicate that the correction for phase changes introduced by local oscillator frequency changes leads to refractivity errors no larger than 0.25 N units: equivalent to a relative humidity change of only 0.25% at 20°C. Requested stable local oscillator (STALO) frequency changes were accurate to 0.002 ppm based on laboratory measurements. More serious are the random phase change errors introduced when targets are not at the range-gate center and there are changes in the transmitter frequency (ΔfTx) or the refractivity (ΔN). Observations at C band with a 2-μs pulse show an additional 66° of phase change noise for a ΔfTx of 190 kHz (34 ppm); this allows the effect due to ΔN to be predicted. Even at S band with klystron transmitters, significant phase change noise should occur when a large ΔN develops relative to the reference period [e.g., ~55° when ΔN = 60 for the Next Generation Weather Radar (NEXRAD) radars]. At shorter wavelengths (e.g., C and X band) and with magnetron transmitters in particular, refractivity retrievals relative to an earlier reference period are even more difficult, and operational retrievals may be restricted to changes over shorter (e.g., hourly) periods of time. Target location errors can be reduced by using a shorter pulse or identified by a new technique making alternate measurements at two closely spaced frequencies, which could even be achieved with a dual–pulse repetition frequency (PRF) operation of a magnetron transmitter.
Resumo:
Using monthly time-series data 1999-2013, the paper shows that markets for agricultural commodities provide a yardstick for real purchasing power, and thus a reference point for the real value of fiat currencies. The daily need for each adult to consume about 2800 food calories is universal; data from FAO food balance sheets confirm that the world basket of food consumed daily is non-volatile in comparison to the volatility of currency exchange rates, and so the replacement cost of food consumed provides a consistent indicator of economic value. Food commodities are storable for short periods, but ultimately perishable, and this exerts continual pressure for markets to clear in the short term; moreover, food calories can be obtained from a very large range of foodstuffs, and so most households are able to use arbitrage to select a near optimal weighting of quantities purchased. The paper proposes an original method to enable a standard of value to be established, definable in physical units on the basis of actual worldwide consumption of food goods, with an illustration of the method.
Resumo:
Reinforcing the Low Voltage (LV) distribution network will become essential to ensure it remains within its operating constraints as demand on the network increases. The deployment of energy storage in the distribution network provides an alternative to conventional reinforcement. This paper presents a control methodology for energy storage to reduce peak demand in a distribution network based on day-ahead demand forecasts and historical demand data. The control methodology pre-processes the forecast data prior to a planning phase to build in resilience to the inevitable errors between the forecasted and actual demand. The algorithm uses no real time adjustment so has an economical advantage over traditional storage control algorithms. Results show that peak demand on a single phase of a feeder can be reduced even when there are differences between the forecasted and the actual demand. In particular, results are presented that demonstrate when the algorithm is applied to a large number of single phase demand aggregations that it is possible to identify which of these aggregations are the most suitable candidates for the control methodology.
Resumo:
Extreme variability of the winter- and spring-time stratospheric polar vortex has been shown to affect extratropical tropospheric weather. Therefore, reducing stratospheric forecast error may be one way to improve the skill of tropospheric weather forecasts. In this review, the basis for this idea is examined. A range of studies of different stratospheric extreme vortex events shows that they can be skilfully forecasted beyond five days and into the sub-seasonal range (0-30 days) in some cases. Separate studies show that typical errors in forecasting a stratospheric extreme vortex event can alter tropospheric forecasts skill by 5-7% in the extratropics on sub-seasonal timescales. Thus understanding what limits stratospheric predictability is of significant interest to operational forecasting centres. Both limitations in forecasting tropospheric planetary waves and stratospheric model biases have been shown to be important in this context.
Resumo:
The IEEE 754 standard for oating-point arithmetic is widely used in computing. It is based on real arithmetic and is made total by adding both a positive and a negative infinity, a negative zero, and many Not-a-Number (NaN) states. The IEEE infinities are said to have the behaviour of limits. Transreal arithmetic is total. It also has a positive and a negative infinity but no negative zero, and it has a single, unordered number, nullity. We elucidate the transreal tangent and extend real limits to transreal limits. Arguing from this firm foundation, we maintain that there are three category errors in the IEEE 754 standard. Firstly the claim that IEEE infinities are limits of real arithmetic confuses limiting processes with arithmetic. Secondly a defence of IEEE negative zero confuses the limit of a function with the value of a function. Thirdly the definition of IEEE NaNs confuses undefined with unordered. Furthermore we prove that the tangent function, with the infinities given by geometrical con- struction, has a period of an entire rotation, not half a rotation as is commonly understood. This illustrates a category error, confusing the limit with the value of a function, in an important area of applied mathe- matics { trigonometry. We brie y consider the wider implications of this category error. Another paper proposes transreal arithmetic as a basis for floating- point arithmetic; here we take the profound step of proposing transreal arithmetic as a replacement for real arithmetic to remove the possibility of certain category errors in mathematics. Thus we propose both theo- retical and practical advantages of transmathematics. In particular we argue that implementing transreal analysis in trans- floating-point arith- metic would extend the coverage, accuracy and reliability of almost all computer programs that exploit real analysis { essentially all programs in science and engineering and many in finance, medicine and other socially beneficial applications.