276 resultados para Climate Change And Variability
Resumo:
Solar outputs during the current solar minimum are setting record low values for the space age. Evidence is here reviewed that this is part of a decline in solar activity from a grand solar maximum and that the Sun has returned to a state that last prevailed in 1924. Recent research into what this means, and does not mean, for climate change is reviewed.
Resumo:
Africa is thought to be the region most vulnerable to the impacts of climate variability and change. Agriculture plays a dominant role in supporting rural livelihoods and economic growth over most of Africa. Three aspects of the vulnerability of food crop systems to climate change in Africa are discussed: the assessment of the sensitivity of crops to variability in climate, the adaptive capacity of farmers, and the role of institutions in adapting to climate change. The magnitude of projected impacts of climate change on food crops in Africa varies widely among different studies. These differences arise from the variety of climate and crop models used, and the different techniques used to match the scale of climate model output to that needed by crop models. Most studies show a negative impact of climate change on crop productivity in Africa. Farmers have proved highly adaptable in the past to short- and long-term variations in climate and in their environment. Key to the ability of farmers to adapt to climate variability and change will be access to relevant knowledge and information. It is important that governments put in place institutional and macro-economic conditions that support and facilitate adaptation and resilience to climate change at local, national and transnational level.
Resumo:
Estimates of the response of crops to climate change rarely quantify the uncertainty inherent in the simulation of both climate and crops. We present a crop simulation ensemble for a location in India, perturbing the response of both crop and climate under both baseline (12 720 simulations) and doubled-CO2 (171720 simulations) climates. Some simulations used parameter values representing genotypic adaptation to mean temperature change. Firstly, observed and simulated yields in the baseline climate were compared. Secondly, the response of yield to changes in mean temperature was examined and compared to that found in the literature. No consistent response to temperature change was found across studies. Thirdly, the relative contribution of uncertainty in crop and climate simulation to the total uncertainty in projected yield changes was examined. In simulations without genotypic adaptation, most of the uncertainty came from the climate model parameters. Comparison with the simulations with genotypic adaptation and with a previous study suggested that the relatively low crop parameter uncertainty derives from the observational constraints on the crop parameters used in this study. Fourthly, the simulations were used, together with an observed dataset and a simple analysis of crop cardinal temperatures and thermal time, to estimate the potential for adaptation using existing cultivars. The results suggest that the germplasm for complete adaptation of groundnut cultivation in western India to a doubled-CO2 environment may not exist. In conjunction with analyses of germplasm and local management
Resumo:
The aim of this study is to analyse the vascular flora and the local climate along an altitudinal gradient in the Lefka Ori massif Crete and to evaluate the potential effects of climate change on the plant diversity of the sub-alpine and alpine zones. It provides a quantitative/qualitative analysis of vegetation-environment relationships for four summits along an altitude gradient on the Lefka Ori massif Crete (1664-2339 m). The GLORIA multi-summit approach was used to provide vegetation and floristic data together with temperature records for every summit. Species richness and species turnover was calculated together with floristic similarity between the summits. 70 species were recorded, 20 of which were endemic, belonging to 23 different families. Cretan endemics dominate at these high altitudes. Species richness and turnover decreased with altitude. The two highest summits showed greater floristic similarity. Only 20% of the total flora recorded reaches the highest summit while 10% is common among summits. Overall there was a 4.96 degrees C decrease in temperature along the 675 m gradient. Given a scenario of temperature increase the ecotone between the sub-alpine and alpine zone would be likely to have the greatest species turnover. Southern exposures are likely to be invaded first by thermophilous species while northern exposures are likely to be more resistant to changes. Species distribution shifts will also depend on habitat availability. Many, already threatened, local endemic species will be affected first.
Resumo:
Natural resource-dependent societies in developing countries are facing increased pressures linked to global climate change. While social-ecological systems evolve to accommodate variability, there is growing evidence that changes in drought, storm and flood extremes are increasing exposure of currently vulnerable populations. In many countries in Africa, these pressures are compounded by disruption to institutions and variability in livelihoods and income. The interactions of both rapid and slow onset livelihood disturbance contribute to enduring poverty and slow processes of rural livelihood renewal across a complex landscape. We explore cross-scale dynamics in coping and adaptation response, drawing on qualitative data from a case study in Mozambique. The research characterises the engagements across multiple institutional scales and the types of agents involved, providing insight into emergent conditions for adaptation to climate change in rural economies, The analysis explores local responses to climate shocks, food security and poverty reduction, through informal institutions, forms of livelihood diversification and collective land-use systems that allow reciprocity, flexibility and the ability to buffer shocks. However, the analysis shows that agricultural initiatives have helped to facilitate effective livelihood renewal, through the reorganisation of social institutions and opportunities for communication, innovation and micro-credit. Although there are challenges to mainstreaming adaptation at different scales, this research shows why it is critical to assess how policies can protect conditions for emergence of livelihood transformation. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We quantify the risks of climate-induced changes in key ecosystem processes during the 21st century by forcing a dynamic global vegetation model with multiple scenarios from 16 climate models and mapping the proportions of model runs showing forest/nonforest shifts or exceedance of natural variability in wildfire frequency and freshwater supply. Our analysis does not assign probabilities to scenarios or weights to models. Instead, we consider distribution of outcomes within three sets of model runs grouped by the amount of global warming they simulate: <2°C (including simulations in which atmospheric composition is held constant, i.e., in which the only climate change is due to greenhouse gases already emitted), 2–3°C, and >3°C. High risk of forest loss is shown for Eurasia, eastern China, Canada, Central America, and Amazonia, with forest extensions into the Arctic and semiarid savannas; more frequent wildfire in Amazonia, the far north, and many semiarid regions; more runoff north of 50°N and in tropical Africa and northwestern South America; and less runoff in West Africa, Central America, southern Europe, and the eastern U.S. Substantially larger areas are affected for global warming >3°C than for <2°C; some features appear only at higher warming levels. A land carbon sink of ≈1 Pg of C per yr is simulated for the late 20th century, but for >3°C this sink converts to a carbon source during the 21st century (implying a positive climate feedback) in 44% of cases. The risks continue increasing over the following 200 years, even with atmospheric composition held constant.
Resumo:
Although the use of climate scenarios for impact assessment has grown steadily since the 1990s, uptake of such information for adaptation is lagging by nearly a decade in terms of scientific output. Nonetheless, integration of climate risk information in development planning is now a priority for donor agencies because of the need to prepare for climate change impacts across different sectors and countries. This urgency stems from concerns that progress made against Millennium Development Goals (MDGs) could be threatened by anthropogenic climate change beyond 2015. Up to this time the human signal, though detectable and growing, will be a relatively small component of climate variability and change. This implies the need for a twin-track approach: on the one hand, vulnerability assessments of social and economic strategies for coping with present climate extremes and variability, and, on the other hand, development of climate forecast tools and scenarios to evaluate sector-specific, incremental changes in risk over the next few decades. This review starts by describing the climate outlook for the next couple of decades and the implications for adaptation assessments. We then review ways in which climate risk information is already being used in adaptation assessments and evaluate the strengths and weaknesses of three groups of techniques. Next we identify knowledge gaps and opportunities for improving the production and uptake of climate risk information for the 2020s. We assert that climate change scenarios can meet some, but not all, of the needs of adaptation planning. Even then, the choice of scenario technique must be matched to the intended application, taking into account local constraints of time, resources, human capacity and supporting infrastructure. We also show that much greater attention should be given to improving and critiquing models used for climate impact assessment, as standard practice. Finally, we highlight the over-arching need for the scientific community to provide more information and guidance on adapting to the risks of climate variability and change over nearer time horizons (i.e. the 2020s). Although the focus of the review is on information provision and uptake in developing regions, it is clear that many developed countries are facing the same challenges. Copyright © 2009 Royal Meteorological Society
Resumo:
In response to increasing atmospheric con- centrations of greenhouse gases, the rate of time- dependent climate change is determined jointly by the strength of climate feedbacks and the e�ciency of pro- cesses which remove heat from the surface into the deep ocean. This work examines the vertical heat transport processes in the ocean of the HADCM2 atmosphere± ocean general circulation model (AOGCM) in experi- ments with CO2 held constant (control) and increasing at 1% per year (anomaly). The control experiment shows that global average heat exchanges between the upper and lower ocean are dominated by the Southern Ocean, where heat is pumped downwards by the wind- driven circulation and di�uses upwards along sloping isopycnals. This is the reverse of the low-latitude balance used in upwelling±di�usion ocean models, the global average upward di�usive transport being against the temperature gradient. In the anomaly experiment, weakened convection at high latitudes leads to reduced diffusive and convective heat loss from the deep ocean, and hence to net heat uptake, since the advective heat input is less a�ected. Reduction of deep water produc- tion at high latitudes results in reduced upwelling of cold water at low latitudes, giving a further contribution to net heat uptake. On the global average, high-latitude processes thus have a controlling in¯uence. The impor- tant role of di�usion highlights the need to ensure that the schemes employed in AOGCMs give an accurate representation of the relevant sub-grid-scale processes.
Resumo:
This paper assesses the relationship between amount of climate forcing – as indexed by global mean temperature change – and hydrological response in a sample of UK catchments. It constructs climate scenarios representing different changes in global mean temperature from an ensemble of 21 climate models assessed in the IPCC AR4. The results show a considerable range in impact between the 21 climate models, with – for example - change in summer runoff at a 2oC increase in global mean temperature varying between -40% and +20%. There is evidence of clustering in the results, particularly in projected changes in summer runoff and indicators of low flows, implying that the ensemble mean is not an appropriate generalised indicator of impact, and that the standard deviation of responses does not adequately characterise uncertainty. The uncertainty in hydrological impact is therefore best characterised by considering the shape of the distribution of responses across multiple climate scenarios. For some climate model patterns, and some catchments, there is also evidence that linear climate change forcings produce non-linear hydrological impacts. For most variables and catchments, the effects of climate change are apparent above the effects of natural multi-decadal variability with an increase in global mean temperature above 1oC, but there are differences between catchments. Based on the scenarios represented in the ensemble, the effect of climate change in northern upland catchments will be seen soonest in indicators of high flows, but in southern catchments effects will be apparent soonest in measures of summer and low flows. The uncertainty in response between different climate model patterns is considerably greater than the range due to uncertainty in hydrological model parameterisation.
Resumo:
This paper presents a preface to this Special Issue on the results of the QUEST-GSI (Global Scale Impacts) project on climate change impacts on catchment-scale water resources. A detailed description of the unified methodology, subsequently used in all studies in this issue, is provided. The project method involved running simulations of catchment-scale hydrology using a unified set of past and future climate scenarios, to enable a consistent analysis of the climate impacts around the globe. These scenarios include "policy-relevant" prescribed warming scenarios. This is followed by a synthesis of the key findings. Overall, the studies indicate that in most basins the models project substantial changes to river flow, beyond that observed in the historical record, but that in many cases there is considerable uncertainty in the magnitude and sign of the projected changes. The implications of this for adaptation activities are discussed.