187 resultados para 2415: equatorial ionosphere
Resumo:
Two Schiff bases, HL1 and HL2 have been prepared by the condensation of N-methyl-1,3-propanediamine (mpn) with salicylaldehyde and 1-benzoylacetone (Hbn) respectively. HL1 on reaction with Cu(ClO4)(2)center dot 6H(2)O in methanol produced a trinuclear Cu-II complex, [(CuL1)(3)(mu(3)-OH)](ClO4)(2)center dot H2O center dot 0.5CH(2)Cl(2) (1) but HL2 underwent hydrolysis under similar reaction conditions to result in a ternary Cu-II complex, [Cu(bn)(mpn)ClO4]. Both complexes have been characterised by single-crystal X-ray analyses, IR and UV-Vis spectroscopy and electrochemical studies. The partial cubane core [Cu3O4] of 1 consists of a central mu(3)-OH and three peripheral phenoxo bridges from the Schiff base. All three copper atoms of the trinuclear unit are five-coordinate with a distorted square-pyramidal geometry. The ternary complex 2 is mononuclear with the square-pyramidal Cu-II coordinated by a chelating bidentate diamine (mpn) and a benzoylacetonate (bn) moiety in the equatorial plane and one of the oxygen atoms of perchlorate in an axial position. The results show that the Schiff base (HL2) derived from 1-benzoylacetone is more prone to hydrolysis than that from salicylaldehyde (HL1). Magnetic measurements of 1 have been performed in the 1.8-300 K temperature range. The experimental data clearly indicate antiferromagnetism in the complex. The best-fit parameters for complex 1 are g = 2.18(1) and J = -15.4(2) cm(-1).
Resumo:
An unusual hexanuclear Cu-II complex, [{[Cu(NHDEPO)](3)(mu(3)-O)(O3ClO)}(2)(mu-H)]center dot 7ClO(4)center dot 4H(2)O (1) was prepared starting from Cu(ClO4)(2)center dot 6H(2)O and the oxime-based Schiff base ligand NHDEPO (= 3-[3-(diethylamino)propylimino]butan-2-one oxime). Structural characterization of the complex reveals that it consists of two triangular Cu3O units, the copper ions being at the corners of an equilateral triangle, separated by an O center dot center dot center dot O distance of 2,447(5) angstrom, held together solely by a proton. In each triangle, the copper atoms are in square-pyramid environments. The equatorial plane consists of the bridging oxygen of the central OH-(O2-) group together with three atoms (N, N, O) of the Schiff base. All Unusual triply coordinated perchlorate ion (mu(3)-kappa O:kappa O':kappa O '') interacts in axial position with the three copper ions, Variable-temperature (2-300 K) magnetic susceptibility measurements show that complex 1 is antiferromagnetically Coupled (J = -148 cm(1-)). The EPR data at low temperature clearly indicates the presence of spin frustration phenomenon in the complex.
Resumo:
Four new cadmium(II) complexes [Cd-2(bz)(4)(H2O)(4)(mu 2-hmt)]center dot Hbz center dot H2O (1), [Cd-3(bz)(6)(H2O)(6)(mu 2-hmt)(2)]center dot 6H(2)O (2), [Cd(pa)(2)(H2O)(mu(2)-hmt)](n) (3), and {[Cd-3(ac)(6)(H2O)(3)(mu(3)-hmt)(2)]center dot 6H(2)O}(n) (4) with hexamine (hmt) and monocarboxylate ions, benzoate (bz), phenylacetate (pa), or acetate (ac) have been synthesized and characterized structurally. Structure determinations reveal that 1 is dinuclear, 2 is trinuclear, 3 is a one-dimensional (1D) infinite chain, and 4 is a two-dimensional (2D) polymer with fused hexagonal rings consisting of Cd-II and hmt. All the Cd-II atoms in the four complexes (except one CdII in 2) possess seven-coordinate pentagonal bipyramidal geometry with the various chelating bidentate carboxylate groups in equatorial sites. One of the CdII ions in 2, a complex that contains two monodentate carboxylates is in a distorted octahedral environment. The bridging mode of hmt is mu 2- in complexes 1-3 but is mu 3- in complex 4. In all complexes, there are significant numbers of H-bonds, C-H/pi, and pi-pi interactions which play crucial roles in forming the supramolecular networks. The importance of the noncovalent interactions in terms of energies and geometries has been analyzed using high level ab initio calculations. The effect of the cadmium coordinated to hmt on the energetic features of the C-H/pi interaction is analyzed. Finally, the interplay between C-H/pi and pi-pi interactions observed in the crystal structure of 3 is also studied.
Resumo:
Two new mono-aqua-bridged dinuclear Cu(II) complexes of tridentate NNO Schiff bases, [Cu-2(mu-H2O)L-2(1)(H2O)(2)](BF4)(2)center dot 2H(2)O (1) and [Cu-2(mu-H2O)L-2(2)(H2O)(2)](BF4)(2)center dot 2H(2)O (2) where HL1 = 2-[1-(2-dimethylamino-ethylimino)-ethyl]-phenol and HL2 =2-[(2-dimethylamino-ethylimino)-methyl]-phenol were synthesized. Both the complexes were characterized by single-crystal X-ray diffraction analyses and variable-temperature magnetic measurements. For both the complexes each Cu(II) ion is in a square-pyramidal environment being bonded to three atoms from the tridentate NNO Schiff base and a terminal H2O molecule in the equatorial plane; a second H2O ligand acts as a bridge between the two Cu(II) centres through the axial positions. Hydrogen bonds between the terminal H2O ligand and the Schiff base of the adjacent centre complete the intra-dimer linkages. Variable-temperature (4-300 K) magnetic susceptibility measurement shows the presence of significant antiferromagnetic coupling for both the complexes (J = -12.2 and -12.5 cm(-1), respectively, for 1 and 2), mediated mainly through the intra-dimer H-bonds.
Resumo:
Abstract. Not long after Franklin’s iconic studies, an atmospheric electric field was discovered in “fair weather” regions, well away from thunderstorms. The origin of the fair weather field was sought by Lord Kelvin, through development of electrostatic instrumentation and early data logging techniques, but was ultimately explained through the global circuit model of C.T.R. Wilson. In Wilson’s model, charge exchanged by disturbed weather electrifies the ionosphere, and returns via a small vertical current density in fair weather regions. New insights into the relevance of fair weather atmospheric electricity to terrestrial and planetary atmospheres are now emerging. For example, there is a possible role of the global circuit current density in atmospheric processes, such as cloud formation. Beyond natural atmospheric processes, a novel practical application is the use of early atmospheric electrostatic investigations to provide quantitative information on past urban air pollution.
Resumo:
Visual observation of human actions provokes more motor activation than observation of robotic actions. We investigated the extent to which this visuomotor priming effect is mediated by bottom-up or top-down processing. The bottom-up hypothesis suggests that robotic movements are less effective in activating the ‘mirror system’ via pathways from visual areas via the superior temporal sulcus to parietal and premotor cortices. The top-down hypothesis postulates that beliefs about the animacy of a movement stimulus modulate mirror system activity via descending pathways from areas such as the temporal pole and prefrontal cortex. In an automatic imitation task, subjects performed a prespecified movement (e.g. hand opening) on presentation of a human or robotic hand making a compatible (opening) or incompatible (closing) movement. The speed of responding on compatible trials, compared with incompatible trials, indexed visuomotor priming. In the first experiment, robotic stimuli were constructed by adding a metal and wire ‘wrist’ to a human hand. Questionnaire data indicated that subjects believed these movements to be less animate than those of the human stimuli but the visuomotor priming effects of the human and robotic stimuli did not differ. In the second experiment, when the robotic stimuli were more angular and symmetrical than the human stimuli, human movements elicited more visuomotor priming than the robotic movements. However, the subjects’ beliefs about the animacy of the stimuli did not affect their performance. These results suggest that bottom-up processing is primarily responsible for the visuomotor priming advantage of human stimuli.
Resumo:
The IR and ligand field spectra and the structure of the mixed-ligand compound [N,N-dimethyl-N′-ethyl-1,2-diaminoethane(1-phenyl-1,3-butanedionato)(perchlorato)copper(II)]), [Cu(dmeen)bzac(OClO3)], are reported. The structure was determined by single crystal X-ray diffraction analysis (triclinic, space group ). The structure is square pyramidal with the apical position occupied by one oxygen of the tetrahedral perchlorato group (distance from copper 2.452(5) Å). The plane of the phenyl ring is tilted forming an angle of 16.72(14)° with the plane of the β-dionato moiety. The nitrogenous base adopts the gauche conformation with torsional angle of 108.72(14)°. The ethyl group is cis oriented relative to the phenyl group, occupying the equatorial position with the vector of the carbon-nitrogen bond forming an angle of 143.9(3)° with the CuNN plane. The interactions of the adjacent axial hydrogen with an oxygen of the perchlorato group result in hydrogen bond formation. The IR spectra reveal that in the solid state the Br− or Cl− displace easily the ClO4− group. The shifts in the ligand field spectra indicate that polar solvents participate in donor-acceptor interactions with the metal centre along an axis perpendicular to the CuN2O2 plane.
Resumo:
Phenylphosphinic acid (HPhPO2H) is oxidized to phenylphosphonic acid (PhPO3H2) at room temperature using a solution of [Cu2(μ-O2CCH3)4(H2O)2] in pyridine. The phenylphosphonic acid was recovered as the monomeric copper(II) complex [Cu(PhPO3H)2(C5H5N)4]·H2O (1a), and the reaction thought to proceed via a copper(I) intermediate. Recrystallization of 1a from methanol gave [Cu(PhPO3H)2(C5H5N)4]·2CH3OH (1b). The unsolvated complex [Cu(PhPO3H)2(C5H5N)4] (1c) was prepared by refluxing polymeric [Cu(PhPO3)(H2O)] (2) in pyridine. The X-ray crystal structures of 1b and 1c show that in each of these monomeric complexes the copper(II) ion is ligated by four equatorial pyridine molecules and two axial monoanionic phenylphosphonate groups. A cyclic voltammetric study of 1a revealed a quasi-reversible Cu2+/Cu+ couple with E1/2 = +228 mV (vs Ag/AgCl).
Resumo:
[Cu2(μO2CCH3)4(H2O)2], [CuCO3·Cu(OH)2], [CoSO4·7H2O], [Co((+)-tartrate)], and [FeSO4·7H2O] react with excess racemic (±)- 1,1′-binaphthyl-2,2′-diyl hydrogen phosphate {(±)-PhosH} to give mononuclear CuII, CoII and FeII products. The cobalt product, [Co(CH3OH)4(H2O)2]((+)-Phos)((−)-Phos) ·2CH3OH·H2O (7), has been identified by X-ray diffraction. The high-spin, octahedral CoII atom is ligated by four equatorial methanol molecules and two axial water molecules. A (+)- and a (−)-Phos− ion are associated with each molecule of the complex but are not coordinated to the metal centre. For the other CoII, CuII and FeII samples of similar formulation to (7) it is also thought that the Phos− ions are not bonded directly to the metal. When some of the CuII and CoII samples are heated under high vacuum there is evidence that the Phos− ions are coordinated directly to the metals in the products.
Resumo:
Extending previous studies, a full-circle investigation of the ring current has been made using Cluster 4-spacecraft observations near perigee, at times when the Cluster array had relatively small separations and nearly regular tetrahedral configurations, and when the Dst index was greater than −30 nT (non-storm conditions). These observations result in direct estimations of the near equatorial current density at all magnetic local times (MLT) for the first time and with sufficient accuracy, for the following observations. The results confirm that the ring current flows westward and show that the in situ average measured current density (sampled in the radial range accessed by Cluster 4–4.5RE) is asymmetric in MLT, ranging from 9 to 27 nAm−2. The direction of current is shown to be very well ordered for the whole range of MLT. Both of these results are in line with previous studies on partial ring extent. The magnitude of the current density, however, reveals a distinct asymmetry: growing from 10 to 27 nAm−2 as azimuth reduces from about 12:00MLT to 03:00 and falling from 20 to 10 nAm−2 less steadily as azimuth reduces from 24:00 to 12:00MLT. This result has not been reported before and we suggest it could reflect a number of effects. Firstly, we argue it is consistent with the operation of region-2 field aligned-currents (FACs), which are expected to flow upward into the ring current around 09:00MLT and downward out of the ring current around 14:00MLT. Secondly, we note that it is also consistent with a possible asymmetry in the radial distribution profile of current density (resulting in higher peak at 4– 4.5RE). We note that part of the enhanced current could reflect an increase in the mean AE activity (during the periods in which Cluster samples those MLT).
Resumo:
An account is given of a number of recent studies with idealised models whose aim is to further understanding of the large-scale tropical atmospheric circulation. Initial-value integrations with a model with imposed heating are used to discuss aspects of the Asian summer monsoon, including constraints on cross-equatorial flow into the monsoon. The summer descent in the Mediterranean region and on the eastern sides of the summer subtropical anticyclones are seen to be associated with the monsoons to their east. An aqua-planet GCM is used to investigate the relationship between simple SST distributions and tropical convection and circulation. The existence of strong equatorial convection and Hadley cells is found to depend sensitively on the curvature of the meridional profile in SST. Zonally confined SST maxima produce convective maxima centred to the west and suppression of convection elsewhere. Strong equatorial zonal flow changes are found in some experiments and three mechanisms for producing these are investigated in a model with imposed heating. 1.
Resumo:
We study the global atmospheric budgets of mass, moisture, energy and angular momentum in the latest reanalysis from the European Centre for Medium-Range Weather Forecasts (ECMWF), ERA-Interim, for the period 1989–2008 and compare with ERA-40. Most of the measures we use indicate that the ERA-Interim reanalysis is superior in quality to ERA-40. In ERA-Interim the standard deviation of the monthly mean global dry mass of 0.7 kg m−2 (0.007%) is slightly worse than in ERA-40, and long time-scale variations in dry mass originate predominately in the surface pressure field. The divergent winds are improved in ERA-Interim: the global standard deviation of the time-averaged dry mass budget residual is 10 kg m−2 day−1 and the quality of the cross-equatorial mass fluxes is improved. The temporal variations in the global evaporation minus precipitation (E − P) are too large but the global moisture budget residual is 0.003 kg m−2 day−1 with a spatial standard deviation of 0.3 kg m−2 day−1. Both the E − P over ocean and P − E over land are about 15% larger than the 1.1 Tg s−1 transport of water from ocean to land. The top of atmosphere (TOA) net energy losses are improved, with a value of 1 W m−2, but the meridional gradient of the TOA net energy flux is smaller than that from the Clouds and the Earth's Radiant Energy System (CERES) data. At the surface the global energy losses are worse, with a value of 7 W m−2. Over land however, the energy loss is only 0.5 W m−2. The downwelling thermal radiation at the surface in ERA-Interim of 341 W m−2 is towards the higher end of previous estimates. The global mass-adjusted energy budget residual is 8 W m−2 with a spatial standard deviation of 11 W m−2, and the mass-adjusted atmospheric energy transport from low to high latitudes (the sum for the two hemispheres) is 9.5 PW
Resumo:
A description is given of the global atmospheric electric circuit operating between the Earth’s surface and the ionosphere. Attention is drawn to the huge range of horizontal and vertical spatial scales, ranging from 10−9 m to 1012 m, concerned with the many important processes at work. A similarly enormous range of time scales is involved from 10−6 s to 109 s, in the physical effects and different phenomena that need to be considered. The current flowing in the global circuit is generated by disturbed weather such as thunderstorms and electrified rain/shower clouds, mostly occurring over the Earth’s land surface. The profile of electrical conductivity up through the atmosphere, determined mainly by galactic cosmic ray ionization, is a crucial parameter of the circuit. Model simulation results on the variation of the ionospheric potential, ∼250 kV positive with respect to the Earth’s potential, following lightning discharges and sprites are summarized. Experimental results comparing global circuit variations with the neutron rate recorded at Climax, Colorado, are then discussed. Within the return (load) part of the circuit in the fair weather regions remote from the generators, charge layers exist on the upper and lower edges of extensive layer clouds; new experimental evidence for these charge layers is also reviewed. Finally, some directions for future research in the subject are suggested.
Resumo:
Accurate replication of the processes associated with the energetics of the tropical ocean is necessary if coupled GCMs are to simulate the physics of ENSO correctly, including the transfer of energy from the winds to the ocean thermocline and energy dissipation during the ENSO cycle. Here, we analyze ocean energetics in coupled GCMs in terms of two integral parameters describing net energy loss in the system using the approach recently proposed by Brown and Fedorov (J Clim 23:1563–1580, 2010a) and Fedorov (J Clim 20:1108–1117, 2007). These parameters are (1) the efficiency c of the conversion of wind power into the buoyancy power that controls the rate of change of the available potential energy (APE) in the ocean and (2) the e-folding rate a that characterizes the damping of APE by turbulent diffusion and other processes. Estimating these two parameters for coupled models reveals potential deficiencies (and large differences) in how state-of-the-art coupled GCMs reproduce the ocean energetics as compared to ocean-only models and data assimilating models. The majority of the coupled models we analyzed show a lower efficiency (values of c in the range of 10–50% versus 50–60% for ocean-only simulations or reanalysis) and a relatively strong energy damping (values of a-1 in the range 0.4–1 years versus 0.9–1.2 years). These differences in the model energetics appear to reflect differences in the simulated thermal structure of the tropical ocean, the structure of ocean equatorial currents, and deficiencies in the way coupled models simulate ENSO.
Resumo:
The meridional overturning circulation (MOC) is part of a global ocean circulation that redistributes heat from Equatorial to Polar regions. In the Atlantic the MOC carries heat northward (the Atlantic Heat Conveyor) which is released to the atmosphere and maintains UK temperatures between 3 to 5°C higher than elsewhere at similar latitudes. However, the present strength and structure of the MOC may not continue. The 2007 IPCC assessment report (IPCC, 2007) suggests that there is less than 10% chance of abrupt changes during the 21st Century, but that there is greater than 90% chance that MOC will slow by an average of 25% compared to pre-industrial levels, offsetting some of the warming over the European sector of the North Atlantic, and contributing to the rate of sea-level-rise. Daily observations using the RAPID MOC mooring array at 26.5°N are providing a continuous and growing time-series of the MOC strength and structure, but the five year record is at present too short to establish trends in the annual mean MOC. Other observations do not at present provide a coherent Atlantic wide picture of MOC variability, and there is little evidence of any long-term slowing. Ocean assimilation models suggest a slowing over the past decade of around 10%. However, models still have many problems in representing ocean circulation and conclusions of change are very uncertain.