21 resultados para upper semicontinuity of attractors


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate models predict a large range of possible future temperatures for a particular scenario of future emissions of greenhouse gases and other anthropogenic forcings of climate. Given that further warming in coming decades could threaten increasing risks of climatic disruption, it is important to determine whether model projections are consistent with temperature changes already observed. This can be achieved by quantifying the extent to which increases in well mixed greenhouse gases and changes in other anthropogenic and natural forcings have already altered temperature patterns around the globe. Here, for the first time, we combine multiple climate models into a single synthesized estimate of future warming rates consistent with past temperature changes. We show that the observed evolution of near-surface temperatures appears to indicate lower ranges (5–95%) for warming (0.35–0.82 K and 0.45–0.93 K by the 2020s (2020–9) relative to 1986–2005 under the RCP4.5 and 8.5 scenarios respectively) than the equivalent ranges projected by the CMIP5 climate models (0.48–1.00 K and 0.51–1.16 K respectively). Our results indicate that for each RCP the upper end of the range of CMIP5 climate model projections is inconsistent with past warming.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The experimental variogram computed in the usual way by the method of moments and the Haar wavelet transform are similar in that they filter data and yield informative summaries that may be interpreted. The variogram filters out constant values; wavelets can filter variation at several spatial scales and thereby provide a richer repertoire for analysis and demand no assumptions other than that of finite variance. This paper compares the two functions, identifying that part of the Haar wavelet transform that gives it its advantages. It goes on to show that the generalized variogram of order k=1, 2, and 3 filters linear, quadratic, and cubic polynomials from the data, respectively, which correspond with more complex wavelets in Daubechies's family. The additional filter coefficients of the latter can reveal features of the data that are not evident in its usual form. Three examples in which data recorded at regular intervals on transects are analyzed illustrate the extended form of the variogram. The apparent periodicity of gilgais in Australia seems to be accentuated as filter coefficients are added, but otherwise the analysis provides no new insight. Analysis of hyerpsectral data with a strong linear trend showed that the wavelet-based variograms filtered it out. Adding filter coefficients in the analysis of the topsoil across the Jurassic scarplands of England changed the upper bound of the variogram; it then resembled the within-class variogram computed by the method of moments. To elucidate these results, we simulated several series of data to represent a random process with values fluctuating about a mean, data with long-range linear trend, data with local trend, and data with stepped transitions. The results suggest that the wavelet variogram can filter out the effects of long-range trend, but not local trend, and of transitions from one class to another, as across boundaries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new model, RothPC-1, is described for the turnover of organic C in the top metre of soil. RothPC-1 is a version of RothC-26.3, an earlier model for the turnover of C in topsoils. In RothPC-1 two extra parameters are used to model turnover in the top metre of soil: one, p, which moves organic C down the profile by an advective process, and the other, s, which slows decomposition with depth. RothPC-1 is parameterized and tested using measurements (described in Part 1, this issue) of total organic C and radiocarbon on soil profiles from the Rothamsted long-term field experiments, collected over a period of more than 100 years. RothPC-1 gives fits to measurements of organic C and radiocarbon in the 0-23, 23-46, 46-69 and 69-92 cm layers of soil that are almost all within (or close to) measurement error in two areas of regenerating woodland (Geescroft and Broadbalk Wildernesses) and an area of cultivated land from the Broadbalk Continuous Wheat Experiment. The fits to old grassland (the Park Grass Experiment) are less close. Two other sites that provide the requisite pre- and post-bomb data are also fitted; a prairie Chernozem from Russia and an annual grassland from California. Roth-PC-1 gives a close fit to measurements of organic C and radiocarbon down the Chernozem profile, provided that allowance is made for soil age; with the annual grassland the fit is acceptable in the upper part of the profile, but not in the clay-rich Bt horizon below. Calculations suggest that treating the top metre of soil as a homogeneous unit will greatly overestimate the effects of global warming in accelerating the decomposition of soil C and hence on the enhanced release of CO2 from soil organic matter; more realistic estimates will be obtained from multi-layer models such as RothPC-1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lake Kinneret (LK) is a relatively fresh water take situated in the Dead Sea Rift (DSR) Valley. The pore water (PW) in the sediments underlying LK pelagic zone have significantly higher salinity than that of the lake. The concentrations of major ion solutes (Cl, Br, Na, K, Mg) in PW from six 2.4 m to 5.1 m long sediment cores increase linearly with depth, indicating the occurrence of saline, deep seated brines. The upper part of the PW column is affected by the much fresher boundary with LK water and in most cores is characterized by gradually increasing Br/Cl and decreasing Na, Mg, K/Cl molar ratios, which tend to stabilize at about 2.0 m below the sediment surface. The 'stable' molar ratios in the deeper PW vary spatially and are supposed to represent the ratios in the deep underlying brines at each site. When plotted as Na/Cl vs. Br/Cl, the stable ratios of the northern and central part of the lake fall close to a straight line which characterizes many of the brines in the DSR Valley. However, the respective ratios in the southern part of the lake fall markedly off the DSR line. Moreover, Na/Cl and K/Cl molar ratios in the south are significantly higher than in the central and northern parts. delta Cl-37 measured in present LK water is ca. 0.0 parts per thousand. Along the PW column at the lake center, delta Cl-37 is becoming more positive with depth, reaching values of about +0.5 parts per thousand to +0.6 parts per thousand at 3 m depth. Even more positive values (+0.7 parts per thousand to +0.8 parts per thousand) are detected further north, in PW from deeper sediment layers. In contrast, in PW from the southeastern part of the lake, delta Cl-37 is becoming more negative with depth (-1.0 parts per thousand at similar to 2.6 m). It is suggested that these isotopic differences are also indicative of spatial variability in the PW brine sources. O-18 and D values in the PW of all 3 m long cores are similar and resemble the respective levels in LK. The source of H2O in 3 m deep, bed sediments is claimed to be the overlying lake water, and therefore water isotopes do not provide a clue regarding the original water isotopic composition in the underlying brines. PW from the southeast with higher K/Cl and Na/Cl but lower concentrations of these solutes, suggest leaching by meteoric water of sub-surface halite and post-halite salt formations, while the more saline PW from the northern and central parts, that have lower K/Cl and Na/Cl, and higher Br/Cl, are similar to DSR brines and represent underlying residual brines. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time-resolved studies of germylene, GeH2, and dimethygermylene, GeMe2, generated by the 193 nm laser flash photolysis of appropriate precursor molecules have been carried out to try to obtain rate coefficients for their bimolecular reactions with dimethylgermane, Me2GeH2, in the gas-phase. GeH2 + Me2GeH2 was studied over the pressure range 1-100 Torr with SF6 as bath gas and at five temperatures in the range 296-553 K. Only slight pressure dependences were found (at 386, 447 and 553 K). RRKM modelling was carried out to fit these pressure dependences. The high pressure rate coefficients gave the Arrhenius parameters: log(A/cm(3) molecule(-1)s(-1)) = -10.99 +/- 0.07 and E-a = -(7.35 +/- 0.48) kJ mol(-1). No reaction could be found between GeMe2 + Me2GeH2 at any temperature up to 549 K, and upper limits of ca. 10(-14) cm(3) molecule(-1)s(-1) were set for the rate coefficients. A rate coefficient of (1.33 +/- 0.04) x 10(-11)cm(3) molecule(-1)s(-1) was also obtained for GeH2 + MeGeH3 at 296 K. No reaction was found between GeMe2 and MeGeH3. Rate coefficient comparisons showed, inter alia, that in the substrate germane Me-for-H substitution increased the magnitudes of rate coefficients significantly, while in the germylene Me-for-H substitution decreased the magnitudes of rate coefficients by at least four orders of magnitude. Quantum chemical calculations (G2(MP2,SVP)// B3LYP level) supported these findings and showed that the lack of reactivity of GeMe2 is caused by a positive energy barrier for rearrangement of the initially formed complexes. Full details of the structures of intermediate complexes and the discussion of their stabilities are given in the paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time-resolved studies of the reaction of silylene, SiH2, with N-2 have been attempted at 296, 417, and 484 K, using laser flash photolysis to generate and monitor SiH2. No conclusive evidence for reaction could be found even with pressures of N-2 of 500 Torr. This enables us to set upper limits of ca. 3 x 10(-15) cm(3) molecule(-1) s(-1) for the second-order rate constants. A lower limit for the activation energy, E-a, of ca. 47 kJ mol(-1) is also derived. Ab initio calculations at the G3 level indicate that the only SiH2N2 species of lower energy than the separated reactants is the H2Si...N-2 donor-acceptor (ylid) species with a relative enthalpy of -26 kJ mol(-1), insufficient for observation of reaction under the experimental conditions. Ten bound species on the SiH2N2 surface were found and their energies calculated as well as those of the potential dissociation products: HSiN + NH((3)Sigma(-)) and HNSi + NH((3)Sigma(-)). Additionally two of the transition states involving cyclic-SiH2N2 (siladiazirine) were explored. It appears that siladiazirine is neither thermodynamically nor kinetically stable. The findings indicate that Si-N-d bonds (where N-d is double-bonded nitrogen) are not particularly strong. An unexpected cyclic intermediate was found in the isomerization of silaisocyanamide to silacyanamide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The three lowest (1(2)A('), 2(2)A('), and 1(2)A(')) potential-energy surfaces of the C2Cl radical, correlating at linear geometries with (2)Sigma(+) and (2)Pi states, have been studied ab initio using a large basis set and multireference configuration-interaction techniques. The electronic ground state is confirmed to be bent with a very low barrier to linearity, due to the strong nonadiabatic electronic interactions taking place in this system. The rovibronic energy levels of the (CCCl)-C-12-C-12-Cl-35 isotopomer and the absolute absorption intensities at a temperature of 5 K have been calculated, to an upper limit of 2000 cm(-1), using diabatic potential-energy and dipole moment surfaces and a recently developed variational method. The resulting vibronic states arise from a strong mixture of all the three electronic components and their assignments are intrinsically ambiguous. (c) 2005 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first three electronic states (1(2)A', 2(2)A', 1(2)A '') of the C2Br radical, correlating at linear geometries with (2)Sigma(+) and (2)Pi states, have been studied ab initio, using Multi Reference Configuration Interaction techniques. The electronic ground state is found to have a bent equilibrium geometry, R-CC = 1.2621 angstrom, R-CBr = 1.7967 angstrom, < CCBr 156.1 degrees, with a very low barrier to linearity. Similarly to the valence isoelectronic radicals C2F and C2Cl, this anomalous behaviour is attributed to a strong three-state non-adiabatic electronic interaction. The Sigma, Pi(1/2), Pi(3/2) vibronic energy levels and their absolute infrared absorption intensities at a temperature of 5K have been calculated for the (CCBr)-C-12-C-12-Br-79 isotopomer, to an upper limit of 2000 cm(-1), using ab initio diabatic potential energy and dipole moment surfaces and a recently developed variational method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an extensive thermodynamic analysis of a hysteresis experiment performed on a simplified yet Earth-like climate model. We slowly vary the solar constant by 20% around the present value and detect that for a large range of values of the solar constant the realization of snowball or of regular climate conditions depends on the history of the system. Using recent results on the global climate thermodynamics, we show that the two regimes feature radically different properties. The efficiency of the climate machine monotonically increases with decreasing solar constant in present climate conditions, whereas the opposite takes place in snowball conditions. Instead, entropy production is monotonically increasing with the solar constant in both branches of climate conditions, and its value is about four times larger in the warm branch than in the corresponding cold state. Finally, the degree of irreversibility of the system, measured as the fraction of excess entropy production due to irreversible heat transport processes, is much higher in the warm climate conditions, with an explosive growth in the upper range of the considered values of solar constants. Whereas in the cold climate regime a dominating role is played by changes in the meridional albedo contrast, in the warm climate regime changes in the intensity of latent heat fluxes are crucial for determining the observed properties. This substantiates the importance of addressing correctly the variations of the hydrological cycle in a changing climate. An interpretation of the climate transitions at the tipping points based upon macro-scale thermodynamic properties is also proposed. Our results support the adoption of a new generation of diagnostic tools based on the second law of thermodynamics for auditing climate models and outline a set of parametrizations to be used in conceptual and intermediate-complexity models or for the reconstruction of the past climate conditions. Copyright © 2010 Royal Meteorological Society

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a kinetic double layer model coupling aerosol surface and bulk chemistry (K2-SUB) based on the PRA framework of gas-particle interactions (Poschl-Rudich-Ammann, 2007). K2-SUB is applied to a popular model system of atmospheric heterogeneous chemistry: the interaction of ozone with oleic acid. We show that our modelling approach allows de-convoluting surface and bulk processes, which has been a controversial topic and remains an important challenge for the understanding and description of atmospheric aerosol transformation. In particular, we demonstrate how a detailed treatment of adsorption and reaction at the surface can be coupled to a description of bulk reaction and transport that is consistent with traditional resistor model formulations. From literature data we have derived a consistent set of kinetic parameters that characterise mass transport and chemical reaction of ozone at the surface and in the bulk of oleic acid droplets. Due to the wide range of rate coefficients reported from different experimental studies, the exact proportions between surface and bulk reaction rates remain uncertain. Nevertheless, the model results suggest an important role of chemical reaction in the bulk and an approximate upper limit of similar to 10(-11) cm(2) s(-1) for the surface reaction rate coefficient. Sensitivity studies show that the surface accommodation coefficient of the gas-phase reactant has a strong non-linear influence on both surface and bulk chemical reactions. We suggest that K2-SUB may be used to design, interpret and analyse future experiments for better discrimination between surface and bulk processes in the oleic acid-ozone system as well as in other heterogeneous reaction systems of atmospheric relevance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Canopy leaf area index (LAI), defined as the single-sided leaf area per unit ground area, is a quantitative measure of canopy foliar area. LAI is a controlling biophysical property of vegetation function, and quantifying LAI is thus vital for understanding energy, carbon and water fluxes between the land surface and the atmosphere. LAI is routinely available from Earth Observation (EO) instruments such as MODIS. However EO-derived estimates of LAI require validation before they are utilised by the ecosystem modelling community. Previous validation work on the MODIS collection 4 (c4) product suggested considerable error especially in forested biomes, and as a result significant modification of the MODIS LAI algorithm has been made for the most recent collection 5 (c5). As a result of these changes the current MODIS LAI product has not been widely validated. We present a validation of the MODIS c5 LAI product over a 121 km2 area of mixed coniferous forest in Oregon, USA, based on detailed ground measurements which we have upscaled using high resolution EO data. Our analysis suggests that c5 shows a much more realistic temporal LAI dynamic over c4 values for the site we examined. We find improved spatial consistency between the MODIS c5 LAI product and upscaled in situ measurements. However results also suggest that the c5 LAI product underestimates the upper range of upscaled in situ LAI measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are approximately 7000 languages spoken in the world today. This diversity reflects the legacy of thousands of years of cultural evolution. How far back we can trace this history depends largely on the rate at which the different components of language evolve. Rates of lexical evolution are widely thought to impose an upper limit of 6000-10,000 years on reliably identifying language relationships. In contrast, it has been argued that certain structural elements of language are much more stable. Just as biologists use highly conserved genes to uncover the deepest branches in the tree of life, highly stable linguistic features hold the promise of identifying deep relationships between the world's languages. Here, we present the first global network of languages based on this typological information. We evaluate the relative evolutionary rates of both typological and lexical features in the Austronesian and Indo-European language families. The first indications are that typological features evolve at similar rates to basic vocabulary but their evolution is substantially less tree-like. Our results suggest that, while rates of vocabulary change are correlated between the two language families, the rates of evolution of typological features and structural subtypes show no consistent relationship across families.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce an algorithm (called REDFITmc2) for spectrum estimation in the presence of timescale errors. It is based on the Lomb-Scargle periodogram for unevenly spaced time series, in combination with the Welch's Overlapped Segment Averaging procedure, bootstrap bias correction and persistence estimation. The timescale errors are modelled parametrically and included in the simulations for determining (1) the upper levels of the spectrum of the red-noise AR(1) alternative and (2) the uncertainty of the frequency of a spectral peak. Application of REDFITmc2 to ice core and stalagmite records of palaeoclimate allowed a more realistic evaluation of spectral peaks than when ignoring this source of uncertainty. The results support qualitatively the intuition that stronger effects on the spectrum estimate (decreased detectability and increased frequency uncertainty) occur for higher frequencies. The surplus information brought by algorithm REDFITmc2 is that those effects are quantified. Regarding timescale construction, not only the fixpoints, dating errors and the functional form of the age-depth model play a role. Also the joint distribution of all time points (serial correlation, stratigraphic order) determines spectrum estimation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During winter the ocean surface in polar regions freezes over to form sea ice. In the summer the upper layers of sea ice and snow melts producing meltwater that accumulates in Arctic melt ponds on the surface of sea ice. An accurate estimate of the fraction of the sea ice surface covered in melt ponds is essential for a realistic estimate of the albedo for global climate models. We present a melt-pond–sea-ice model that simulates the three-dimensional evolution of melt ponds on an Arctic sea ice surface. The advancements of this model compared to previous models are the inclusion of snow topography; meltwater transport rates are calculated from hydraulic gradients and ice permeability; and the incorporation of a detailed one-dimensional, thermodynamic radiative balance. Results of model runs simulating first-year and multiyear sea ice are presented. Model results show good agreement with observations, with duration of pond coverage, pond area, and ice ablation comparing well for both the first-year ice and multiyear ice cases. We investigate the sensitivity of the melt pond cover to changes in ice topography, snow topography, and vertical ice permeability. Snow was found to have an important impact mainly at the start of the melt season, whereas initial ice topography strongly controlled pond size and pond fraction throughout the melt season. A reduction in ice permeability allowed surface flooding of relatively flat, first-year ice but had little impact on the pond coverage of rougher, multiyear ice. We discuss our results, including model shortcomings and areas of experimental uncertainty.