19 resultados para ultra high vacuum
Resumo:
The temperature-time profiles of 22 Australian industrial ultra-high-temperature (UHT) plants and 3 pilot plants, using both indirect and direct heating, were surveyed. From these data, the operating parameters of each plant, the chemical index C*, the bacteriological index B* and the predicted changes in the levels of beta-lactoglobulin, alpha-lactalbumin, lactulose, furosine and browning were determined using a simulation program based on published formulae and reaction kinetics data. There was a wide spread of heating conditions used, some of which resulted in a large margin of bacteriological safety and high chemical indices. However, no conditions were severe enough to cause browning during processing. The data showed a clear distinction between the indirect and direct heating plants. They also indicated that degree of denaturation of alpha-lactalbumin varied over a wide range and may be a useful discriminatory index of heat treatment. Application of the program to pilot plants illustrated its value in determining processing conditions in these plants to simulate the conditions in industrial UHT plants. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The flavor characteristics of pennywort juices with added sugar treated by ultra-high pressure, pasteurization, and sterilization were investigated using solid phase microextraction combined with gas chromatography-mass spectrometry. It was found that sesquiterpene hydrocarbons comprised the major class of volatile components present and the juices had a characteristic aroma due to the presence of volatiles including beta-caryophyllene and humulene and alpha-copaene. In comparison with heated juices, HPP-treated samples could retain more volatile compounds such as linalool and geraniol similar to those present in fresh juice, whereas some volatiles such as alpha-terpinene and ketone class were apparently formed by thermal treatment. All processing operations produced juice that was not significantly different in the concentration of total volatiles. Practical Application: Pennywort juice is considered a nutraceutical drink for health benefits. Therefore, to preserve all aroma and active components in this juice, a nonthermal process such as ultra-high pressure should be a more appropriate technique for retention of its nutritive values than pasteurization and sterilization.
Resumo:
Ultra High Temperature #1, initiated by Rebecca Bibby forms the first in an ongoing project which explores the realms of collaboration, performance, writing and publication as artistic vehicle of production, dispersion and progression. With Bibby's text -that re-fictions the futuristic projections of technosexuality in Metropolis (1927)- at its core was launched, printed, compiled and distributed in a live performance by POLLYFIBRE at Eastside Projects in Birmingham. The limited edition printed publication was designed by An Endless Supply whose Risograph stencil printer was used as an instrument in the performed production of the text. As a crude avatar of Rebecca Bibby’s practice, Aikon-II, a mechanically programmed signature machine automatically signed each copy of the text during the performance. POLLYFIBRE's ‘flat-pack’ costumes were on display throughout the duration of the exhibition. POLLYFIBRE is a performance project created by Christine Ellison.
Resumo:
Goatmilk with and without stabilizing salt was subjected to in-container and UHTsterilization. Heatstability was assessed by measuring the amount of sediment in the milk. Without stabilizing salts, goatmilk usually produced less sediment when subjected to in-containersterilization compared with UHT processing. Addition of stabilizing salts up to 12.8 mM resulted in a progressive increase in sediment for in-containersterilization. In contrast, adding stabilizing salts at 6.4 mM initially reduced sediment formation in UHT-treated milk but addition of stabilizing salts at 12.8 mM increased sediment formation. Adding stabilizing salts to goatmilk increased pH, decreased ionic calcium, and increased ethanol stability. Adding up to 2 mM calcium chloride increased sediment formation more after UHT treatment than after in-containersterilization. These results suggest that no single mechanism or set of reactions causes milk to produce sediment during heating and that the favored pathway is different for UHT and in-containersterilization processes. Poor heatstability could be induced both by increasing ionic calcium and by decreasing it. Ethanol stability is not a good indicator of heatstability for in-containersterilization, but it may be for UHTsterilization, if milk does not enter the region of poor heatstability found at low concentrations of ionic calcium.
Resumo:
This paper explores the possibility of combining moderate vacuum frying followed by post-frying high vacuum application during the oil drainage stage, with the aim to reduce oil content in potato chips. Potato slices were initially vacuum fried under two operating conditions (140 °C, 20 kPa and 162 °C, 50.67 kPa) until the moisture content reached 10 and 15 % (wet basis), prior to holding the samples in the head space under high vacuum level (1.33 kPa). This two-stage process was found to lower significantly the amount of oil taken up by potato chips by an amount as high as 48 %, compared to drainage at the same pressure as the frying pressure. Reducing the pressure value to 1.33 kPa reduced the water saturation temperature (11 °C), causing the product to continuously lose moisture during the course of drainage. Continuous release of water vapour prevented the occluded surface oil from penetrating into the product structure and released it from the surface of the product. When frying and drainage occurred at the same pressure, the temperature of the product fell below the water saturation temperature soon after it was lifted out of the oil, which resulted in the oil getting sucked into the product. Thus, lowering the pressure after frying to a value well below the frying pressure is a promising method to lower oil uptake by the product.
Resumo:
Heat stability was evaluated in bulk raw milk, collected throughout the year and subjected to ultra-high temperature (UHT) or in-container sterilisation, with and without added calcium chloride (2 mM), disodium hydrogen phosphate (DSHP, 10 mM) and trisodium citrate (TSC, 10 mM). More sediment was observed following in-container sterilisation (0.24%) compared with UHT (0.19%). Adding CaCl2 made the milk more unstable to UHT than to in-container sterilisation, while adding DSHP and TSC made the milk more unstable during in-container sterilisation than to UHT processing, although TSC addition increased the sediment formed by UHT processing. Better heat stability was observed in autumn and winter than in spring and summer following UHT. However, following in-container sterilisation, samples with added stabilising salts showed significantly improved heat stability in autumn, whereas with added CaCl2, the best heat stability was observed in spring. No correlation was found between urea and heat stability. DSHP and TSC made the milk more unstable during in-container sterilisation than to UHT processing, although TSC addition increased the sediment formed by UHT processing. Better heat stability was observed in autumn and winter than in spring and summer following UHT. However, following in-container sterilisation, samples with added stabilising salts showed significantly improved heat stability in autumn, whereas with added CaCl2, the best heat stability was observed in spring. No correlation was found between urea and heat stability.
Resumo:
The intermetallic compound InPd (CsCl type of crystal structure with a broad compositional range) is considered as a candidate catalyst for the steam reforming of methanol. Single crystals of this phase have been grown to study the structure of its three low-index surfaces under ultra-high vacuum conditions, using low energy electron diffraction (LEED), X-ray photoemission spectroscopy (XPS), and scanning tunneling microscopy (STM). During surface preparation, preferential sputtering leads to a depletion of In within the top few layers for all three surfaces. The near-surface regions remain slightly Pd-rich until annealing to ∼580 K. A transition occurs between 580 and 660 K where In segregates towards the surface and the near-surface regions become slightly In-rich above ∼660 K. This transition is accompanied by a sharpening of LEED patterns and formation of flat step-terrace morphology, as observed by STM. Several superstructures have been identified for the different surfaces associated with this process. Annealing to higher temperatures (≥750 K) leads to faceting via thermal etching as shown for the (110) surface, with a bulk In composition close to the In-rich limit of the existence domain of the cubic phase. The Pd-rich InPd(111) is found to be consistent with a Pd-terminated bulk truncation model as shown by dynamical LEED analysis while, after annealing at higher temperature, the In-rich InPd(111) is consistent with an In-terminated bulk truncation, in agreement with density functional theory (DFT) calculations of the relative surface energies. More complex surface structures are observed for the (100) surface. Additionally, individual grains of a polycrystalline sample are characterized by micro-spot XPS and LEED as well as low-energy electron microscopy. Results from both individual grains and “global” measurements are interpreted based on comparison to our single crystals findings, DFT calculations and previous literature.
Resumo:
"Yor" is a traditional sausage like product widely consumed in Thailand. Its textures are usually set by steaming, in this experiment ultra-high pressure was used to modify the product. Three types of hydrocolloid; carboxymethylcellulose (CMC), locust bean gum (LBG) and xanthan gum, were added to minced ostrich meat batter at concentration of 0-1% and subjected to high pressure 600 Mpa, 50 degrees C, 40 min. The treated samples were analysed for storage (G) and loss (G '') moduli by dynamic oscillatory testing as well as creep compliance for control stress measurement. Their microstructures using confocal microscopy were also examined. Hydrocolloid addition caused a significant (P < 0.05) decrease in both the G' and G '' moduli. However the loss tangent of all samples remained unchanged. Addition of hydrocolloids led to decreases in the gel network formation but appears to function as surfactant materials during the initial mixing stage as shown by the microstructure. Confocal microscopy suggested that the size of the fat droplets decreased with gum addition. The fat droplets were smallest on the addition of xanthan gum and increased in the order CMC, LBG and no added gum, respectively. Creep parameters of ostrich yors with four levels of xanthan gum addition (0.50%, 0.75%, 1.00% and 1.25%) showed an increase in the instantaneous compliance (J(0)), the retarded compliance (J(1)) and retardation time (lambda(1)) but a decrease in the viscosity (eta(0)) with increasing levels of addition. The results also suggested that the larger deformations used during creep testing might be more helpful in assessing the mechanical properties of the product than the small deformations used in oscillatory rheology. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Solar-pointing Fourier transform infrared (FTIR) spectroscopy offers the capability to measure both the fine scale and broadband spectral structure of atmospheric transmission simultaneously across wide spectral regions. It is therefore suited to the study of both water vapour monomer and continuum absorption behaviours. However, in order to properly address this issue, it is necessary to radiatively calibrate the FTIR instrument response. A solar-pointing high-resolution FTIR spectrometer was deployed as part of the ‘Continuum Absorption by Visible and Infrared radiation and its Atmospheric Relevance’ (CAVIAR) consortium project. This paper describes the radiative calibration process using an ultra-high-temperature blackbody and the consideration of the related influence factors. The result is a radiatively calibrated measurement of the solar irradiation at the ground across the IR region from 2000 to 10 000 cm−1 with an uncertainty of between 3.3 and 5.9 per cent. This measurement is shown to be in good general agreement with a radiative-transfer model. The results from the CAVIAR field measurements are being used in ongoing studies of atmospheric absorbers, in particular the water vapour continuum.
Resumo:
Insoluble calcium salts were added to milk to increase total calcium by 30 mM, without changing properties influencing heat stability, such as pH and ionic calcium. There were no major signs of instability associated with coagulation, sediment formation or fouling when subjected to ultra high temperature (UHT) and in-container sterilisation. The buffering capacity was also unaltered. On the other hand, addition of soluble calcium salts reduced pH, increased ionic calcium and caused coagulation to occur. Calcium chloride showed the largest destabilising effect, followed by calcium lactate and calcium gluconate. Milk became unstable to UHT processing at lower calcium additions compared to in-container sterilisation.
Resumo:
[Cu2(μO2CCH3)4(H2O)2], [CuCO3·Cu(OH)2], [CoSO4·7H2O], [Co((+)-tartrate)], and [FeSO4·7H2O] react with excess racemic (±)- 1,1′-binaphthyl-2,2′-diyl hydrogen phosphate {(±)-PhosH} to give mononuclear CuII, CoII and FeII products. The cobalt product, [Co(CH3OH)4(H2O)2]((+)-Phos)((−)-Phos) ·2CH3OH·H2O (7), has been identified by X-ray diffraction. The high-spin, octahedral CoII atom is ligated by four equatorial methanol molecules and two axial water molecules. A (+)- and a (−)-Phos− ion are associated with each molecule of the complex but are not coordinated to the metal centre. For the other CoII, CuII and FeII samples of similar formulation to (7) it is also thought that the Phos− ions are not bonded directly to the metal. When some of the CuII and CoII samples are heated under high vacuum there is evidence that the Phos− ions are coordinated directly to the metals in the products.
Resumo:
Understanding the response of the South Asian monsoon (SAM) system to global climate change is an interesting scientific problem that has enormous implications from the societal viewpoint. While the CMIP3 projections of future changes in monsoon precipitation used in the IPCC AR4 show major uncertainties, there is a growing recognition that the rapid increase of moisture in a warming climate can potentially enhance the stability of the large-scale tropical circulations. In this work, the authors have examined the stability of the SAM circulation based on diagnostic analysis of climate datasets over the past half century; and addressed the issue of likely future changes in the SAM in response to global warming using simulations from an ultrahigh resolution (20 km) global climate model. Additional sensitivity experiments using a simplified atmospheric model have been presented to supplement the overall findings. The results here suggest that the intensity of the boreal summer monsoon overturning circulation and the associated southwesterly monsoon flow have significantly weakened during the past 50-years. The weakening trend of the monsoon circulation is further corroborated by a significant decrease in the frequency of moderate-to-heavy monsoon rainfall days and upward vertical velocities particularly over the narrow mountain ranges of the Western Ghats. Based on simulations from the 20-km ultra high-resolution model, it is argued that a stabilization (weakening) of the summer monsoon Hadley-type circulation in response to global warming can potentially lead to a weakened large-scale monsoon flow thereby resulting in weaker vertical velocities and reduced orographic precipitation over the narrow Western Ghat mountains by the end of the twenty-first century. Supplementary experiments using a simplified atmospheric model indicate a high sensitivity of the large-scale monsoon circulation to atmospheric stability in comparison with the effects of condensational heating.
Resumo:
This paper will introduce the Baltex research programme and summarize associated numerical modelling work which has been undertaken during the last five years. The research has broadly managed to clarify the main mechanisms determining the water and energy cycle in the Baltic region, such as the strong dependence upon the large scale atmospheric circulation. It has further been shown that the Baltic Sea has a positive water balance, albeit with large interannual variations. The focus on the modelling studies has been the use of limited area models at ultra-high resolution driven by boundary conditions from global models or from reanalysis data sets. The programme has further initiated a comprehensive integration of atmospheric, land surface and hydrological modelling incorporating snow, sea ice and special lake models. Other aspects of the programme include process studies such as the role of deep convection, air sea interaction and the handling of land surface moisture. Studies have also been undertaken to investigate synoptic and sub-synoptic events over the Baltic region, thus exploring the role of transient weather systems for the hydrological cycle. A special aspect has been the strong interests and commitments of the meteorological and hydrological services because of the potentially large societal interests of operational applications of the research. As a result of this interests special attention has been put on data-assimilation aspects and the use of new types of data such as SSM/I, GPS-measurements and digital radar. A series of high resolution data sets are being produced. One of those, a 1/6 degree daily precipitation climatology for the years 1996–1999, is such a unique contribution. The specific research achievements to be presented in this volume of Meteorology and Atmospheric Physics is the result of a cooperative venture between 11 European research groups supported under the EU-Framework programmes.
Resumo:
Neuroprostheses interfaced with transected peripheral nerves are technological routes to control robotic limbs as well as convey sensory feedback to patients suffering from traumatic neural injuries or degenerative diseases. To maximize the wealth of data obtained in recordings, interfacing devices are required to have intrafascicular resolution and provide high signal-to-noise ratio (SNR) recordings. In this paper, we focus on a possible building block of a three-dimensional regenerative implant: a polydimethylsiloxane (PDMS) microchannel electrode capable of highly sensitive recordings in vivo. The PDMS 'micro-cuff' consists of a 3.5 mm long (100 µm × 70 µm cross section) microfluidic channel equipped with five evaporated Ti/Au/Ti electrodes of sub-100 nm thickness. Individual electrodes have average impedance of 640 ± 30 kΩ with a phase angle of −58 ± 1 degrees at 1 kHz and survive demanding mechanical handling such as twisting and bending. In proof-of-principle acute implantation experiments in rats, surgically teased afferent nerve strands from the L5 dorsal root were threaded through the microchannel. Tactile stimulation of the skin was reliably monitored with the three inner electrodes in the device, simultaneously recording signal amplitudes of up to 50 µV under saline immersion. The overall SNR was approximately 4. A small but consistent time lag between the signals arriving at the three electrodes was observed and yields a fibre conduction velocity of 30 m s−1. The fidelity of the recordings was verified by placing the same nerve strand in oil and recording activity with hook electrodes. Our results show that PDMS microchannel electrodes open a promising technological path to 3D regenerative interfaces.