31 resultados para transcription factor 7 like 2
Resumo:
BACKGROUND: Genetic polymorphisms of transcription factor 7-like 2 (TCF7L2) have been associated with type 2 diabetes and BMI. OBJECTIVE: The objective was to investigate whether TCF7L2 HapA is associated with weight development and whether such an association is modulated by protein intake or by the glycemic index (GI). DESIGN: The investigation was based on prospective data from 5 cohort studies nested within the European Prospective Investigation into Cancer and Nutrition. Weight change was followed up for a mean (±SD) of 6.8 ± 2.5 y. TCF7L2 rs7903146 and rs10885406 were successfully genotyped in 11,069 individuals and used to derive HapA. Multiple logistic and linear regression analysis was applied to test for the main effect of HapA and its interaction with dietary protein or GI. Analyses from the cohorts were combined by random-effects meta-analysis. RESULTS: HapA was associated neither with baseline BMI (0.03 ± 0.07 BMI units per allele; P = 0.6) nor with annual weight change (8.8 ± 11.7 g/y per allele; P = 0.5). However, a previously shown positive association between intake of protein, particularly of animal origin, and subsequent weight change in this population proved to be attenuated by TCF7L2 HapA (P-interaction = 0.01). We showed that weight gain becomes independent of protein intake with an increasing number of HapA alleles. Substitution of protein with either fat or carbohydrates showed the same effects. No interaction with GI was observed. CONCLUSION: TCF7L2 HapA attenuates the positive association between animal protein intake and long-term body weight change in middle-aged Europeans but does not interact with the GI of the diet.
Resumo:
Krüppel-like transcription factors (Klfs) modulate fundamental cell processes. Cardiac myocytes are terminally-differentiated, but hypertrophy in response to stimuli such as endothelin-1. H2O2 or cytokines promote myocyte apoptosis. Microarray studies of neonatal rat myocytes identified several Klfs as endothelin-1-responsive genes. We used quantitative PCR for further analysis of Klf expression in neonatal rat myocytes. In response to endothelin-1, Klf2 mRNA expression was rapidly increased ( approximately 9-fold; 15-30 min) with later increases in expression of Klf4 and Klf6 ( approximately 5-fold; 30-60 min). All were regulated as immediate early genes (cycloheximide did not inhibit the increases in expression). Klf5 expression was increased at 1-2 h ( approximately 13-fold) as a second phase response (cycloheximide inhibited the increase). These increases were transient and attenuated by U0126. H2O2 increased expression of Klf2, Klf4 and Klf6, but interleukin-1beta or tumor necrosis factor alpha downregulated Klf2 expression with no effect on Klf4 or Klf6. Of the Klfs which repress transcription, endothelin-1 rapidly downregulated expression of Klf3, Klf11 and Klf15. The dynamic regulation of expression of multiple Klf family members in cardiac myocytes suggests that, as a family, they are actively involved in regulating phenotypic responses (hypertrophy and apoptosis) to extracellular stimuli.
Resumo:
The endostyle of invertebrate chordates is a pharyngeal organ that is thought to be homologous with the follicular thyroid of vertebrates. Although thyroid-like features such as iodine-concentrating and peroxidase activities are located in the dorsolateral part of both ascidian and amphioxus endostyles, the structural organization and numbers of functional units are different. To estimate phylogenetic relationships of each functional zone with special reference to the evolution of the thyroid, we have investigated, in ascidian and amphioxus, the expression patterns of thyroid-related transcription factors such as TTF-2/MoxE4 and Pax2/5/8, as well as the forkhead transcription factors FoxQ1 and FoxA. Comparative gene expression analyses depicted an overall similarity between ascidians and amphioxus endostyles, while differences in expression patterns of these genes might be specifically related to the addition or elimination of a pair of glandular zones. Expressions of Ci-FoxE and BbFoxE4 suggest that the ancestral FoxE class might have been recruited for the formation of thyroid-like region in a possible common ancestor of chordates. Furthermore, coexpression of FoxE4, Pax2/5/8, and TPO in the dorsolateral part of both ascidian and amphioxus endostyles suggests that genetic basis of the thyroid function was already in place before the vertebrate lineage. (c) 2005 Wiley-Liss, Inc.
Resumo:
The GATA family of transcription factors establishes genetic networks that control developmental processes including hematopoiesis, vasculogenesis, and cardiogenesis. We found that GATA-1 strongly activates transcription of the Tac-2 gene, which encodes proneurokinin-B, a precursor of neurokinin-B (NK-B). Neurokinins function through G protein-coupled transmembrane receptors to mediate diverse physiological responses including pain perception and the control of vascular tone. Whereas an elevated level of NK-B was implicated in pregnancy-associated pre-eclampsia ( Page, N. M., Woods, R. J., Gardiner, S. M., Lomthaisong, K., Gladwell, R. T., Butlin, D. J., Manyonda, I. T., and Lowry, P. J. ( 2000) Nature 405, 797 - 800), the regulation of NK-B synthesis and function are poorly understood. Tac-2 was expressed in normal murine erythroid cells and was induced upon ex vivo erythropoiesis. An estrogen receptor fusion to GATA-1 (ER-GATA-1) and endogenous GATA-1 both occupied a region of Tac-2 intron-7, which contains two conserved GATA motifs. Genetic complementation analysis in GATA-1-null G1E cells revealed that endogenous GATA-2 occupied the same region of intron-7, and expression of ER-GATA-1 displaced GATA-2 and activated Tac-2 transcription. Erythroid cells did not express neurokinin receptors, whereas aortic and yolk sac endothelial cells differentially expressed neurokinin receptor subtypes. Since NK-B induced cAMP accumulation in yolk sac endothelial cells, these results suggest a new mode of vascular regulation in which GATA-1 controls NK-B synthesis in erythroid cells.
Resumo:
Dietary antioxidants can affect cellular processes relevant to chronic inflammatory diseases such as atherosclerosis. We have used non- standard techniques to quantify effects of the antioxidant soy isoflavones genistein and daidzein on translocation of Nuclear Factor-KB (NF-KB) and nitric oxide (NO) production, which are important in these diseases. Translocation was quantified using confocal immunofluoresecence microscopy and ratiometric image analysis. NO was quantified by an electrochemical method after reduction of its oxidation products in cell culture supernatants. Activation of the RAW 264.7 murine monocyte/macrophage cell line increased the ratio of nuclear to cytoplasmic immunostaining for NF-kB. The increase was exacerbated by pre-treatment with genistein or daidzein. To show that decreases could also be detected, pre-treatment with the pine bark extract Pycnogenol (R) r was examined, and found to reduce translocation. NO production was also increased by activation, but was reduced by pre-treatment with genistein or daidzein. In the EA. hy926 human endothelial cell line, constitutive production was detectable and was increased by thrombin. The confocal and electrochemical methods gave data that agreed with results obtained using the established electromobility shift and Griess assays, but were more sensitive, more convenient, gave more detailed information and avoided the use of radioisotopes.
Resumo:
Long-term depression (LTD) is one of the paradigms used in vivo or ex vivo for studying memory formation. In order to identify genes with potential relevance for memory formation we used mouse organotypic hippocampal slice cultures in which chemical LTD was induced by applications of 3,5-dihydroxyphenylglycine (DHPG). The induction of chemical LTD was robust, as monitored electrophysiologically. Gene expression analysis after chemical LTD induction was performed using cDNA microarrays containing >7,000 probes. The DHPG-induced expression of immediate early genes (c-fos, junB, egr1 and nr4a1) was subsequently verified by TaqMan polymerase chain reaction. Bioinformatic analysis suggested a common regulator element [serum response factor (SRF)/Elk-1 binding sites] within the promoter region of these genes. Indeed, here we could show a DHPG-dependent binding of SRF at the SRF response element (SRE) site within the promoter region of c-fos and junB. However, SRF binding to egr1 promoter sites was constitutive. The phosphorylation of the ternary complex factor Elk-1 and its localization in the nucleus of hippocampal neurones after DHPG treatment was shown by immunofluorescence using a phosphospecific antibody. We suggest that LTD leads to SRF/Elk-1-regulated gene expression of immediate early transcription factors, which could in turn promote a second broader wave of gene expression.
Resumo:
Background Long-term changes in synaptic plasticity require gene transcription, indicating that signals generated at the synapse must be transported to the nucleus. Synaptic activation of hippocampal neurons is known to trigger retrograde transport of transcription factor NF-κB. Transcription factors of the NF-κB family are widely expressed in the nervous system and regulate expression of several genes involved in neuroplasticity, cell survival, learning and memory. Principal Findings In this study, we examine the role of the dynein/dynactin motor complex in the cellular mechanism targeting and transporting activated NF-κB to the nucleus in response to synaptic stimulation. We demonstrate that overexpression of dynamitin, which is known to dissociate dynein from microtubules, and treatment with microtubule-disrupting drugs inhibits nuclear accumulation of NF-κB p65 and reduces NF-κB-dependent transcription activity. In this line, we show that p65 is associated with components of the dynein/dynactin complex in vivo and in vitro and that the nuclear localization sequence (NLS) within NF-κB p65 is essential for this binding. Conclusion This study shows the molecular mechanism for the retrograde transport of activated NF-κB from distant synaptic sites towards the nucleus.
Resumo:
variety of transcription factors including Wilms tumor gene (Wt-1), steroidogenic factor 1 (Sf-1), dosage-sensitive sex reversal, adrenal hypoplasia congenita on the X-chromosome, Gene 1 (Dax-1), and pre-B-cell transcription factor 1 (Pbx1) have been defined as necessary for regular adrenocortical development. However, the role of Pbx1 for adrenal growth and function in the adult organism together with the molecular relationship between Pbx1 and these other transcription factors have not been characterized. We demonstrate that Pbx haploinsufficiency (Pbx1(+/-)) in mice is accompanied by a significant lower adrenal weight in adult animals compared with wild-type controls. Accordingly, baseline proliferating cell nuclear antigen levels are lower in Pbx1(+/-) mice, and unilateral adrenalectomy results in impaired contralateral compensatory adrenal growth, indicating a lower proliferative potential in the context of Pbx1 haploinsufficiency. In accordance with the key role of IGFs in adrenocortical proliferation and development, real-time RT-PCR demonstrates significant lower expression levels of the IGF-I receptor, and up-regulation of IGF binding protein-2. Functionally, Pbx1(+/-) mice display a blunted corticosterone response after ACTH stimulation coincident with lower adrenal expression of the ACTH receptor (melanocortin 2 receptor, Mc2-r). Mechanistically, in vitro studies reveal that Pbx1 and Sf-1 synergistically stimulates Mc2-r promoter activity. Moreover, Sf-1 directly activates the Pbx1 promoter activity in vitro and in vivo. Taken together, these studies provide evidence for a role of Pbx1 in the maintenance of a functional adrenal cortex mediated by synergistic actions of Pbx1 and Sf-1 in the transcriptional regulation of the critical effector of adrenocortical differentiation, the ACTH receptor.
Resumo:
Neural differentiation of embryonic stem cells (ESCs) requires coordinated repression of the pluripotency regulatory program and reciprocal activation of the neurogenic regulatory program. Upon neural induction, ESCs rapidly repress expression of pluripotency genes followed by staged activation of neural progenitor and differentiated neuronal and glial genes. The transcriptional factors that underlie maintenance of pluripotency are partially characterized whereas those underlying neural induction are much less explored, and the factors that coordinate these two developmental programs are completely unknown. One transcription factor, REST (repressor element 1 silencing transcription factor), has been linked with terminal differentiation of neural progenitors and more recently, and controversially, with control of pluripotency. Here, we show that in the absence of REST, coordination of pluripotency and neural induction is lost and there is a resultant delay in repression of pluripotency genes and a precocious activation of both neural progenitor and differentiated neuronal and glial genes. Furthermore, we show that REST is not required for production of radial glia-like progenitors but is required for their subsequent maintenance and differentiation into neurons, oligodendrocytes, and astrocytes. We propose that REST acts as a regulatory hub that coordinates timely repression of pluripotency with neural induction and neural differentiation.
Resumo:
Activating transcription factor 3 (Atf3) is rapidly and transiently upregulated in numerous systems, and is associated with various disease states. Atf3 is required for negative feedback regulation of other genes, but is itself subject to negative feedback regulation possibly by autorepression. In cardiomyocytes, Atf3 and Egr1 mRNAs are upregulated via ERK1/2 signalling and Atf3 suppresses Egr1 expression. We previously developed a mathematical model for the Atf3-Egr1 system. Here, we adjusted and extended the model to explore mechanisms of Atf3 feedback regulation. Introduction of an autorepressive loop for Atf3 tuned down its expression and inhibition of Egr1 was lost, demonstrating that negative feedback regulation of Atf3 by Atf3 itself is implausible in this context. Experimentally, signals downstream from ERK1/2 suppress Atf3 expression. Mathematical modelling indicated that this cannot occur by phosphorylation of pre-existing inhibitory transcriptional regulators because the time delay is too short. De novo synthesis of an inhibitory transcription factor (ITF) with a high affinity for the Atf3 promoter could suppress Atf3 expression, but (as with the Atf3 autorepression loop) inhibition of Egr1 was lost. Developing the model to include newly-synthesised miRNAs very efficiently terminated Atf3 protein expression and, with a 4-fold increase in the rate of degradation of mRNA from the mRNA/miRNA complex, profiles for Atf3 mRNA, Atf3 protein and Egr1 mRNA approximated to the experimental data. Combining the ITF model with that of the miRNA did not improve the profiles suggesting that miRNAs are likely to play a dominant role in switching off Atf3 expression post-induction.
Resumo:
We know little about the genomic events that led to the advent of a multicellular grade of organization in animals, one of the most dramatic transitions in evolution. Metazoan multicellularity is correlated with the evolution of embryogenesis, which presumably was underpinned by a gene regulatory network reliant on the differential activation of signaling pathways and transcription factors. Many transcription factor genes that play critical roles in bilaterian development largely appear to have evolved before the divergence of cnidarian and bilaterian lineages. In contrast, sponges seem to have a more limited suite of transcription factors, suggesting that the developmental regulatory gene repertoire changed markedly during early metazoan evolution. Using whole- genome information from the sponge Amphimedon queenslandica, a range of eumetazoans, and the choanoflagellate Monosiga brevicollis, we investigate the genesis and expansion of homeobox, Sox, T- box, and Fox transcription factor genes. Comparative analyses reveal that novel transcription factor domains ( such as Paired, POU, and T- box) arose very early in metazoan evolution, prior to the separation of extant metazoan phyla but after the divergence of choanoflagellate and metazoan lineages. Phylogenetic analyses indicate that transcription factor classes then gradually expanded at the base of Metazoa before the bilaterian radiation, with each class following a different evolutionary trajectory. Based on the limited number of transcription factors in the Amphimedon genome, we infer that the genome of the metazoan last common ancestor included fewer gene members in each class than are present in extant eumetazoans. Transcription factor orthologues present in sponge, cnidarian, and bilaterian genomes may represent part of the core metazoan regulatory network underlying the origin of animal development and multicellularity.
Resumo:
Adult neural stem cell (aNSC) activity is tuned by external stimuli through the recruitment of transcription factors. This study examines the RE1 silencing transcription factor (REST) in neural stem/progenitor cells isolated from the subventricular zone of adult mouse brain and provides the first extensive characterization of REST-mediated control of the cellular and molecular properties. This study shows that REST knockdown affects the capacity of progenitor cells to generate neurospheres, reduces cell proliferation, and triggers cell differentiation despite the presence of growth factors. Genome- and transcriptome-wide analyses show that REST binding sites are significantly enriched in genes associated with synaptic transmission and nervous system development and function. Seeking candidate regulators of aNSC function, this study identifies a member of the bone morphogenetic protein (BMP) family, BMP6, the mRNA and protein of which increased after REST knockdown. The results of this study extend previous findings, demonstrating a reciprocal control of REST expression by BMPs. Administration of exogenous BMP6 inhibits aNSC proliferation and induces the expression of the astrocytic marker glial fibrillary acidic protein, highlighting its antimitogenic and prodifferentiative effects. This study suggests that BMP6 produced in a REST-regulated manner together with other signals can contribute to regulation of NSC maintenance and fate. © 2015 Wiley Periodicals, Inc.
Resumo:
Cardiac myocyte hypertrophy is associated with an increase in expression of immediate early genes (e.g. c-jun) via activation of pre-existing transcription factors. The activity of CREB transcription factor is regulated through phosphorylation of Ser-133 by one of several protein kinases (e.g. protein kinase A (PKA), p90 ribosomal S6 kinases (RSKs) and the related kinase, MSK1). A cell-permeable form of cAMP, hypertrophic agonists (endothelin-1 (ET-1), phenylephrine (PE)) and hyperosmotic shock all promoted phosphorylation of CREB(Ser-133) in rat neonatal cardiac myocytes. The response to endothelin-1 required the extracellular signal-regulated kinase cascade which stimulates both RSKs and MSK1. Phosphorylation of CREB(Ser-133) in response to ET-1 was not associated with any increase in DNA binding to a consensus cAMP-response element (CRE). The rat c-jun promoter contains elements which may bind either c-Jun/ATF2 or CREB/ATF1 dimers. Using extracts from rat cardiac myocytes, we identified at least two complexes which bind to the most proximal of these elements, one of which contained CREB and the other c-Jun. Thus, phosphorylation and activation of CREB in cardiac myocytes may be effected by a range of different stimuli to influence the expression of immediate early genes such as c-jun.
Resumo:
Development of an efficient tissue culture protocol in coconut is hampered by numerous technical constraints. Thus a greater understanding of the fundamental aspects of embryogenesis is essential. The role of AINTEGUMENTA-like genes in embryogenesis has been elucidated not only in model plants but also in economically important crops. A coconut gene, CnANT, that encodes two APETALA2 (AP2) domains and a conserved linker region similar to those of the BABY BOOM transcription factor was cloned, characterized, and its tissue specific expression was examined. The full-length cDNA of 1,780 bp contains a 1,425-bp open reading frame that encodes a putative peptide of 474 amino acids. The genomic DNA sequence includes 2,317 bp and consists of nine exons interrupted by eight introns. The exon/intron organization of CnANT is similar to that of homologous genes in other plant species. Analysis of differential tissue expression by real-time polymerase chain reaction indicated that CnANT is expressed more highly in in vitro grown tissues than in other vegetative tissues. Sequence comparison of the genomic sequence of CnANT in different coconut varieties revealed one single nucleotide polymorphism and one indel in the first exon and first intron, respectively, which differentiate the Tall group of trees from Dwarfs. The indel sequence, which can be considered a simple sequence repeats marker, was successfully used to distinguish the Tall and Dwarf groups as well as to develop a marker system, which may be of value in the identification of parental varieties that are used in coconut breeding programs in Sri Lanka.