29 resultados para sulfur-containing molecules


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The adsorption of L-CySteine and L-methionine amino acids on a chiral Cu{5 3 1} surface was investigated with high resolution X-ray photoelectron spectroscopy (XPS) and carbon K-edge near edge X-ray absorption fine structure (NEXAFS) Spectroscopy using synchrotron radiation. XPS shows that at 300 K L-cysteine adsorbs through two oxygen, a nitrogen and a sulfur atom, in a four point 'quadrangular footprint', whereas L-methionine adsorbs through only two oxygen and a nitrogen atom in a 'triangular footprint'. NEWS was used to clarify the adsorption geometry of both molecules, which suggests a binding orientation to the top layer and second layer atoms in two different orientations associated with adsorption sites on {1 1 0} and {3 1 1} microfacets; of the Cu{5 3 1} surface. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, the synthetic utility of the Ferrier reaction to access S-linked disaccharides and S-linked glycoamino acids has been probed. Significantly, entry to a range of 1,4- and 1,6-S-linked disaccharides has been achieved using glycals derived from glucose and galactose, and sulfur containing coupling partners derived from methyl α-d-glucopyranoside. Access to S-linked glycoamino acids and glycopeptides has also been achieved using protected cysteine and homocysteine coupling partners within the Ferrier reaction. Functionalisation of the Ferrier products, for example, via dihydroxylation using OsO4 or amino acid coupling, and deprotection of the targets have also been achieved. In this way, entry to materials of interest as mimics of biologically interesting disaccharides and glycopeptides has been realised, including targets derived from rare sugars such as talopyranose and gulopyranose.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multiple parallel synthesis and evaluation have been combined in order to identify new nitrogen heterocycles for the partitioning of minor actinides(III) such as americium(III) from lanthanides such as europium(Ill). An array of triazine-containing molecules was made using multiple parallel syntheses from diketones and amide hydrazides. An excess of each of the resulting purified reagents was dissolved in 1,1,2,2-tetrachloroethane containing 2-bromodecanoic acid, and equilibrated with an aqueous solution containing the radiotracers Eu-152 and Am-241 in nitric acid ([Eu] + [Am] < 400 nanomol dm(-3)). Gamma counting of the organic and aqueous phases led to the identification of several new reagents for the selective extraction of americium(III). In particular, 6-(2-pyridyl)-2-(5,6-dialkyl-1,2,4-triazaphenyl)pyridines were found to be effective reagents for the separation of americium(III) from europium(III), (SFAm/Eu was ca. 30 in [HNO3] = 0.013 mol/L).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aroma compounds were extracted from three cultivars of muskmelon (Cucumis melo L.) by solid-phase microextraction and analysed by gas chromatography-mass-spectrometry. Sulfur-containing esters and compounds containing a straight six-carbon chain were present at high concentrations in cantaloupe melons. Compounds containing a straight nine-carbon chain were at high concentrations in honeydew melons. Methyl esters were present at the highest levels in Galia melons. The sensory properties of the three melons were also compared. Cantaloupe melons were associated with sweet, floral and fruity aromas and a persistent aftertaste. Galia melons possessed the strongest cucumber-like flavours, while cucumber aroma and sweet flavour scored highly in honeydew melons. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

SCIENTIFIC SUMMARY Globally averaged total column ozone has declined over recent decades due to the release of ozone-depleting substances (ODSs) into the atmosphere. Now, as a result of the Montreal Protocol, ozone is expected to recover from the effects of ODSs as ODS abundances decline in the coming decades. However, a number of factors in addition to ODSs have led to and will continue to lead to changes in ozone. Discriminating between the causes of past and projected ozone changes is necessary, not only to identify the progress in ozone recovery from ODSs, but also to evaluate the effectiveness of climate and ozone protection policy options. Factors Affecting Future Ozone and Surface Ultraviolet Radiation • At least for the next few decades, the decline of ODSs is expected to be the major factor affecting the anticipated increase in global total column ozone. However, several factors other than ODS will affect the future evolution of ozone in the stratosphere. These include changes in (i) stratospheric circulation and temperature due to changes in long-lived greenhouse gas (GHG) abundances, (ii) stratospheric aerosol loading, and (iii) source gases of highly reactive stratospheric hydrogen and nitrogen compounds. Factors that amplify the effects of ODSs on ozone (e.g., stratospheric aerosols) will likely decline in importance as ODSs are gradually eliminated from the atmosphere. • Increases in GHG emissions can both positively and negatively affect ozone. Carbon dioxide (CO2)-induced stratospheric cooling elevates middle and upper stratospheric ozone and decreases the time taken for ozone to return to 1980 levels, while projected GHG-induced increases in tropical upwelling decrease ozone in the tropical lower stratosphere and increase ozone in the extratropics. Increases in nitrous oxide (N2O) and methane (CH4) concentrations also directly impact ozone chemistry but the effects are different in different regions. • The Brewer-Dobson circulation (BDC) is projected to strengthen over the 21st century and thereby affect ozone amounts. Climate models consistently predict an acceleration of the BDC or, more specifically, of the upwelling mass flux in the tropical lower stratosphere of around 2% per decade as a consequence of GHG abundance increases. A stronger BDC would decrease the abundance of tropical lower stratospheric ozone, increase poleward transport of ozone, and could reduce the atmospheric lifetimes of long-lived ODSs and other trace gases. While simulations showing faster ascent in the tropical lower stratosphere to date are a robust feature of chemistry-climate models (CCMs), this has not been confirmed by observations and the responsible mechanisms remain unclear. • Substantial ozone losses could occur if stratospheric aerosol loading were to increase in the next few decades, while halogen levels are high. Stratospheric aerosol increases may be caused by sulfur contained in volcanic plumes entering the stratosphere or from human activities. The latter might include attempts to geoengineer the climate system by enhancing the stratospheric aerosol layer. The ozone losses mostly result from enhanced heterogeneous chemistry on stratospheric aerosols. Enhanced aerosol heating within the stratosphere also leads to changes in temperature and circulation that affect ozone. • Surface ultraviolet (UV) levels will not be affected solely by ozone changes but also by the effects of climate change and by air quality change in the troposphere. These tropospheric effects include changes in clouds, tropospheric aerosols, surface reflectivity, and tropospheric sulfur dioxide (SO2) and nitrogen dioxide (NO2). The uncertainties in projections of these factors are large. Projected increases in tropospheric ozone are more certain and may lead to reductions in surface erythemal (“sunburning”) irradiance of up to 10% by 2100. Changes in clouds may lead to decreases or increases in surface erythemal irradiance of up to 15% depending on latitude. Expected Future Changes in Ozone Full ozone recovery from the effects of ODSs and return of ozone to historical levels are not synonymous. In this chapter a key target date is chosen to be 1980, in part to retain the connection to previous Ozone Assessments. Noting, however, that decreases in ozone may have occurred in some regions of the atmosphere prior to 1980, 1960 return dates are also reported. The projections reported on in this chapter are taken from a recent compilation of CCM simulations. The ozone projections, which also form the basis for the UV projections, are limited in their representativeness of possible futures since they mostly come from CCM simulations based on a single GHG emissions scenario (scenario A1B of Emissions Scenarios. A Special Report of Working Group III of the Intergovernmental Panel on Climate Change, Cambridge University Press, 2000) and a single ODS emissions scenario (adjusted A1 of the previous (2006) Ozone Assessment). Throughout this century, the vertical, latitudinal, and seasonal structure of the ozone distribution will be different from what it was in 1980. For this reason, ozone changes in different regions of the atmosphere are considered separately. • The projections of changes in ozone and surface clear-sky UV are broadly consistent with those reported on in the 2006 Assessment. • The capability of making projections and attribution of future ozone changes has been improved since the 2006 Assessment. Use of CCM simulations from an increased number of models extending through the entire period of ozone depletion and recovery from ODSs (1960–2100) as well as sensitivity simulations have allowed more robust projections of long-term changes in the stratosphere and of the relative contributions of ODSs and GHGs to those changes. • Global annually averaged total column ozone is projected to return to 1980 levels before the middle of the century and earlier than when stratospheric halogen loading returns to 1980 levels. CCM projections suggest that this early return is primarily a result of GHG-induced cooling of the upper stratosphere because the effects of circulation changes on tropical and extratropical ozone largely cancel. Global (90°S–90°N) annually averaged total column ozone will likely return to 1980 levels between 2025 and 2040, well before the return of stratospheric halogens to 1980 levels between 2045 and 2060. • Simulated changes in tropical total column ozone from 1960 to 2100 are generally small. The evolution of tropical total column ozone in models depends on the balance between upper stratospheric increases and lower stratospheric decreases. The upper stratospheric increases result from declining ODSs and a slowing of ozone destruction resulting from GHG-induced cooling. Ozone decreases in the lower stratosphere mainly result from an increase in tropical upwelling. From 1960 until around 2000, a general decline is simulated, followed by a gradual increase to values typical of 1980 by midcentury. Thereafter, although total column ozone amounts decline slightly again toward the end of the century, by 2080 they are no longer expected to be affected by ODSs. Confidence in tropical ozone projections is compromised by the fact that simulated decreases in column ozone to date are not supported by observations, suggesting that significant uncertainties remain. • Midlatitude total column ozone is simulated to evolve differently in the two hemispheres. Over northern midlatitudes, annually averaged total column ozone is projected to return to 1980 values between 2015 and 2030, while for southern midlatitudes the return to 1980 values is projected to occur between 2030 and 2040. The more rapid return to 1980 values in northern midlatitudes is linked to a more pronounced strengthening of the poleward transport of ozone due to the effects of increased GHG levels, and effects of Antarctic ozone depletion on southern midlatitudes. By 2100, midlatitude total column ozone is projected to be above 1980 values in both hemispheres. • October-mean Antarctic total column ozone is projected to return to 1980 levels after midcentury, later than in any other region, and yet earlier than when stratospheric halogen loading is projected to return to 1980 levels. The slightly earlier return of ozone to 1980 levels (2045–2060) results primarily from upper stratospheric cooling and resultant increases in ozone. The return of polar halogen loading to 1980 levels (2050–2070) in CCMs is earlier than in empirical models that exclude the effects of GHG-induced changes in circulation. Our confidence in the drivers of changes in Antarctic ozone is higher than for other regions because (i) ODSs exert a strong influence on Antarctic ozone, (ii) the effects of changes in GHG abundances are comparatively small, and (iii) projections of ODS emissions are more certain than those for GHGs. Small Antarctic ozone holes (areas of ozone <220 Dobson units, DU) could persist to the end of the 21st century. • March-mean Arctic total column ozone is projected to return to 1980 levels two to three decades before polar halogen loading returns to 1980 levels, and to exceed 1980 levels thereafter. While CCM simulations project a return to 1980 levels between 2020 and 2035, most models tend not to capture observed low temperatures and thus underestimate present-day Arctic ozone loss such that it is possible that this return date is biased early. Since the strengthening of the Brewer-Dobson circulation through the 21st century leads to increases in springtime Arctic column ozone, by 2100 Arctic ozone is projected to lie well above 1960 levels. Uncertainties in Projections • Conclusions dependent on future GHG levels are less certain than those dependent on future ODS levels since ODS emissions are controlled by the Montreal Protocol. For the six GHG scenarios considered by a few CCMs, the simulated differences in stratospheric column ozone over the second half of the 21st century are largest in the northern midlatitudes and the Arctic, with maximum differences of 20–40 DU between the six scenarios in 2100. • There remain sources of uncertainty in the CCM simulations. These include the use of prescribed ODS mixing ratios instead of emission fluxes as lower boundary conditions, the range of sea surface temperatures and sea ice concentrations, missing tropospheric chemistry, model parameterizations, and model climate sensitivity. • Geoengineering schemes for mitigating climate change by continuous injections of sulfur-containing compounds into the stratosphere, if implemented, would substantially affect stratospheric ozone, particularly in polar regions. Ozone losses observed following large volcanic eruptions support this prediction. However, sporadic volcanic eruptions provide limited analogs to the effects of continuous sulfur emissions. Preliminary model simulations reveal large uncertainties in assessing the effects of continuous sulfur injections. Expected Future Changes in Surface UV. While a number of factors, in addition to ozone, affect surface UV irradiance, the focus in this chapter is on the effects of changes in stratospheric ozone on surface UV. For this reason, clear-sky surface UV irradiance is calculated from ozone projections from CCMs. • Projected increases in midlatitude ozone abundances during the 21st century, in the absence of changes in other factors, in particular clouds, tropospheric aerosols, and air pollutants, will result in decreases in surface UV irradiance. Clear-sky erythemal irradiance is projected to return to 1980 levels on average in 2025 for the northern midlatitudes, and in 2035 for the southern midlatitudes, and to fall well below 1980 values by the second half of the century. However, actual changes in surface UV will be affected by a number of factors other than ozone. • In the absence of changes in other factors, changes in tropical surface UV will be small because changes in tropical total column ozone are projected to be small. By the middle of the 21st century, the model projections suggest surface UV to be slightly higher than in the 1960s, very close to values in 1980, and slightly lower than in 2000. The projected decrease in tropical total column ozone through the latter half of the century will likely result in clear-sky surface UV remaining above 1960 levels. Average UV irradiance is already high in the tropics due to naturally occurring low total ozone columns and high solar elevations. • The magnitude of UV changes in the polar regions is larger than elsewhere because ozone changes in polar regions are larger. For the next decades, surface clear-sky UV irradiance, particularly in the Antarctic, will continue to be higher than in 1980. Future increases in ozone and decreases in clear-sky UV will occur at slower rates than those associated with the ozone decreases and UV increases that occurred before 2000. In Antarctica, surface clear-sky UV is projected to return to 1980 levels between 2040 and 2060, while in the Arctic this is projected to occur between 2020 and 2030. By 2100, October surface clear-sky erythemal irradiance in Antarctica is likely to be between 5% below to 25% above 1960 levels, with considerable uncertainty. This is consistent with multi-model-mean October Antarctic total column ozone not returning to 1960 levels by 2100. In contrast, by 2100, surface clear-sky UV in the Arctic is projected to be 0–10% below 1960 levels.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The irreversible binding of selected sulfur-containing flavor compounds to proteins was investigated in aqueous solutions containing ovalbumin and a mixture of disulfides (diethyl, dipropyl, dibutyl, diallyl, and 2-furfuryl methyl) using solid-phase micro-extraction (SPME). In systems which had not been heated, the recovery of disulfides from the headspace above the protein at the native pH (6.7) was similar to that from an aqueous blank. However, significant losses were observed when the pH of the solution was increased to 8.0. When the protein was denatured by heating, much greater losses were observed and some free thiols were produced. In similar heat-denatured systems at pH 2.0, no losses of disulfides were observed. Disulfides containing allyl or furfuryl groups were more reactive than saturated alkyl disulfides. Interchange reactions between protein sulfhydryl groups and the disulfides are believed to be responsible for the loss of the disulfides.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Three batches of oats were extruded under four combinations of process temperature (150 or 180 °C) and process moisture (14.5 and 18%). Two of the extrudates were evaluated by a sensory panel, and three were analyzed by GC-MS. Maillard reaction products, such as pyrazines, pyrroles, furans, and sulfur-containing compounds, were found in the most severely processed extrudates (high-temperature, low-moisture). These extrudates were also described by the assessors as having toasted cereal attributes. Lipid degradation products, such as alkanals, 2-alkenals, and 2,4-alkadienals, were found at much higher levels in the extrudates of the oat flour that had been debranned. It contained lower protein and fiber levels than the others and showed increased lipase activity. Extrudates from these samples also had significantly lower levels of Maillard reaction products that correlated, in the sensory analysis, with terms such as stale oil and oatmeal. Linoleic acid was added to a fourth oat flour to simulate the result of increased lipase activity, and GC-MS analysis showed both an increase in lipid degradation products and a decrease in Maillard reaction products.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background Oocytes mature in ovarian follicles surrounded by granulosa cells. During follicle growth, granulosa cells replicate and secrete hormones, particularly steroids close to ovulation. However, most follicles cease growing and undergo atresia or regression instead of ovulating. To investigate the effects of stimulatory (follicle-stimulating hormone; FSH) and inhibitory (tumour necrosis factor alpha; TNFα) factors on the granulosa cell transcriptome, bovine ovaries were obtained from a local abattoir and pools of granulosa cells were cultured in vitro for six days under defined serum-free conditions with treatments present on days 3–6. Initially dose–response experiments (n = 4) were performed to determine the optimal concentrations of FSH (0.33 ng/ml) and TNFα (10 ng/ml) to be used for the microarray experiments. For array experiments cells were cultured under control conditions, with FSH, with TNFα, or with FSH plus TNFα (n = 4 per group) and RNA was harvested for microarray analyses. Results Statistical analysis showed primary clustering of the arrays into two groups, control/FSH and TNFα/TNFα plus FSH. The effect of TNFα on gene expression dominated that of FSH, with substantially more genes differentially regulated, and the pathways and genes regulated by TNFα being similar to those of FSH plus TNFα treatment. TNFα treatment reduced the endocrine activity of granulosa cells with reductions in expression of FST, INHA, INBA and AMH. The top-ranked canonical pathways and GO biological terms for the TNFα treatments included antigen presentation, inflammatory response and other pathways indicative of innate immune function and fibrosis. The two most significant networks also reflect this, containing molecules which are present in the canonical pathways of hepatic fibrosis/hepatic stellate cell activation and transforming growth factor β signalling, and these were up regulated. Upstream regulator analyses also predicted TNF, interferons γ and β1 and interleukin 1β. Conclusions In vitro, the transcriptome of granulosa cells responded minimally to FSH compared with the response to TNFα. The response to TNFα indicated an active process akin to tissue remodelling as would occur upon atresia. Additionally there was reduction in endocrine function and induction of an inflammatory response to TNFα that displays features similar to immune cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An important step in breeding for nutritionally enhanced varieties is determining the effects of the post-harvest supply chain on phytochemicals and the changes in VOCs produced over time. TD- GC-TOF-MS was used and a technique for the extraction of VOCs from the headspace using portable tubes is described. Forty-two compounds were detected; 39 were identified by comparison to NIST libraries. Thirty-five compounds had not been previously reported in Eruca sativa. Seven accessions were assessed for changes in headspace VOCs over 7 days. Relative amounts of VOCs across 3 time points were significantly different - isothiocyanate-containing molecules being abundant on 'Day 0'. Each accession showed differences in proportions/types of volatiles produced on each day. PCA revealed a separation of VOC profiles according to the day of sampling. Changes in VOC profiles over time could provide a tool for assessment of shelf-life.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Stabilized nano-sized water droplet carrying water-soluble Co2+ species is employed as a new catalyst system for the oxidation of the alkyl aromatics in the presence of a fluorinated surfactant. This stable system contains no labile C-H structure and can facilitate excellent mixing of catalytic Co(II)/NaBr species, hydrocarbon substrates and oxygen in supercritical carbon dioxide fluid, which is demonstrated to be an excellent alternative solvent system to acetic acid or nitric acid for air oxidation of a number of alkyl aromatic hydrocarbons using Co(II) species at mild conditions. As a result, potential advantages of this 'greener' catalytic method including safer operation, easier separation and purification, higher catalytic activity with selectivity and without using corrosive or oxidation unstable solvent are therefore envisaged.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work presents a model study for the formation of a dimeric dioxomolybdenum(VI) complex [MoO2L]2, generated by simultaneous satisfaction of acceptor and donor character existing in the corresponding monomeric Mo(VI) complex MoO2L. This mononuclear complex is specially designed to contain a coordinatively unsaturated Mo(VI) acceptor centre and a free donor group, (e.g. –NH2 group) strategically placed in the ligand skeleton [H2L = 2-hydroxyacetophenonehydrazone of 2-aminobenzoylhydrazine]. Apart from the dimer [MoO2L]2, complexes of the type MoO2L·B (where B = CH3OH, γ-picoline and imidazole) are also reported. All the complexes are characterized by elemental analysis, spectroscopic (UV–Vis, IR, 1H NMR) techniques and cyclic voltammetry. Single crystal X-ray structures of [MoO2L]2 (1), MoO2L·CH3OH (2), and MoO2L.(γ-pic) (3) have been determined and discussed. DFT calculation on these complexes corroborates experimental data and provides clue for the facile formation of this type of dimer not reported previously. The process of dimer formation may also be viewed as an interaction between two molecules of a specially designed complex acting as a monodentate ligand. This work is expected to open up a new field of design and synthesis of dimeric complexes through the process of symbiotic donor–acceptor (acid–base) interaction between two molecules of a specially designed monomer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hexaazamacrocycle 7,22-dimethyl-3,7,11,18,22,26-hexaazatricyclo[26.2.2.2(13,16)] tetratriaconta-1(30), 13,15,28,31,33- hexaene (Me-2[30] pbz(2)N(6)) was synthesized and characterised by single crystal X-ray diffraction. The macrocycle adopts a conformation with the two aromatic rings almost parallel at a distance of ca. 4.24 Angstrom, but displaced relative to each other by ca. 1.51 Angstrom. The protonation constants of this compound and the stability constants of its complexes with Cu2+ and Zn2+, were determined in water - methanol (9 : 1 v/v) at 25 degreesC with ionic strength 0.10 mol dm(-3) in KCl. The potentiometric and spectroscopic studies (NMR of zinc, cadmium and lead complexes, and EPR of the copper complexes) indicate the formation of only dinuclear complexes. The association constants of the dinuclear copper complex with anions ( thiocyanate, terephthalate and glyphosate) and neutral molecules (1,4-benzenedimethanol, p-xylylenediamine and terephthalic acid) were determined at 20 degreesC in methanol. The structural preferences of this ligand and of its dinuclear copper(II) complex with a variety of bridging ligands were evaluated theoretically by molecular mechanics calculations (MM) and molecular dynamics (MD) using quenching techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The extracting agent 2,6-bis(4,6-di-pivaloylamino-1,3,5-triazin-2-yl)-pyridine (L-5) in n-octanol was found, in synergy with 2-bromodecanoic acid, to give D-Am/D-Eu separation factors (SFs) between 2.4 and 3.7 when used to extract the metal ions from 0.02-0.12 M HNO3. Slightly higher SFs (4-6) were obtained in the absence of the synergist when the ligand was used to extract Am(III) and Eu(III) from 0.98 M HNO3. In order to investigate the possible nature of the extracted species crystal structures of L-5 and the complex formed between Yb(III) with 2,6-bis(4,6-di-amino-1,3,5-triazin-2-yl)-pyridine (L-4) were also determined. The structure of L-5 shows 3 methanol solvent molecules all of which form 2 or 3 hydrogen bonds with triazine nitrogen atoms, amide nitrogen or oxygen atoms, or pyridine nitrogen atoms. However, L-5 is relatively unstable in metal complexation reactions and loses amide groups to form the parent tetramine L-4. The crystal structure of Yb(L-4)(NO3)(3) shows ytterbium in a 9-coordinate environment being bonded to three donor atoms of the ligand and three bidentate nitrate ions. The solvent extraction properties of L-4 and L-5 are far inferior to those found for the 2,6-bis-(1,2,4-triazin-3-yl)-pyridines (L-1) which have SF values of ca. 140 and theoretical calculations have been made to compare the electronic properties of the ligands. The electronic charge distribution in L-4 and L-5 is similar to that found in other terdentate ligands such as terpyridine which have equally poor extraction properties and suggests that the unique properties of L-1 evolve from the presence of two adjacent nitrogen atoms in the triazine rings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single crystal X-ray diffraction study reveals that the water soluble tetrapeptide H2N-Ile-Aib-Leu-m-ABA-CO2H, containing non-coded Aib (alpha-amino isobutyric acid) and m-ABA (meta-amino benzoic acid), crystallizes with two smallest possible diastereomeric beta-hairpin molecules in the asymmetric unit. Although in both of the molecules the chiralities at Ile(1) and Leu(3) are S, a conformational reversal in the back bone chain is observed to produce the beta-hairpins with beta-turn conformations of type II and II'. Interestingly Aib which is known to adopt helical conformation, adopts unusual semi-extended conformation with phi: -49.5(5)degrees, psi: 135.2(5)degrees in type II and phi: 50.6(6)degrees. psi: -137.0(4)degrees in type II' for occupying the i + 1 position of the beta-turns. The two hairpin molecules are further interlocked through intermolecular hydrogen bonds and electrostatic interactions between CO2- and -+NH3 groups to form dimeric supramolecular beta-hairpin aggregate in the crystal state. The CD measurement and 2D NMR study of the peptide in aqueous medium support the existence of beta-hairpin structure in water. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acridine-4-carboxamides form a class of known DNA mono-intercalating agents that exhibit cytotoxic activity against tumour cell lines due to their ability to inhibit topoisomerases. Previous studies of bis-acridine derivatives have yielded equivocal results regarding the minimum length of linker necessary between the two acridine chromophores to allow bis-intercalation of duplex DNA. We report here the 1.7 angstrom resolution X-ray crystal structure of a six-carbon-linked bis(acridine-4-carboxamide) ligand bound to d(CGTACG)(2) molecules by non-covalent duplex cross-linking. The asymmetric unit consists of one DNA duplex containing an intercalated acridine-4-carboxamide chromophore at each of the two CG steps. The other half of each ligand is bound to another DNA molecule in a symmetry-related manner, with the alkyl linker threading through the minor grooves. The two crystallographically independent ligand molecules adopt distinct side chain interactions, forming hydrogen bonds to either O6 or N7 on the major groove face of guanine, in contrast to the semi-disordered state of mono-intercalators bound to the same DNA molecule. The complex described here provides the first structural evidence for the non-covalent cross-linking of DNA by a small molecule ligand and suggests a possible explanation for the inconsistent behaviour of six-carbon linked bis-acridines in previous assays of DNA bis-intercalation.