84 resultados para soil-structure interaction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structure is an important physical feature of the soil that is associated with water movement, the soil atmosphere, microorganism activity and nutrient uptake. A soil without any obvious organisation of its components is known as apedal and this state can have marked effects on several soil processes. Accurate maps of topsoil and subsoil structure are desirable for a wide range of models that aim to predict erosion, solute transport, or flow of water through the soil. Also such maps would be useful to precision farmers when deciding how to apply nutrients and pesticides in a site-specific way, and to target subsoiling and soil structure stabilization procedures. Typically, soil structure is inferred from bulk density or penetrometer resistance measurements and more recently from soil resistivity and conductivity surveys. To measure the former is both time-consuming and costly, whereas observations made by the latter methods can be made automatically and swiftly using a vehicle-mounted penetrometer or resistivity and conductivity sensors. The results of each of these methods, however, are affected by other soil properties, in particular moisture content at the time of sampling, texture, and the presence of stones. Traditional methods of observing soil structure identify the type of ped and its degree of development. Methods of ranking such observations from good to poor for different soil textures have been developed. Indicator variograms can be computed for each category or rank of structure and these can be summed to give the sum of indicator variograms (SIV). Observations of the topsoil and subsoil structure were made at four field sites where the soil had developed on different parent materials. The observations were ranked by four methods and indicator and the sum of indicator variograms were computed and modelled for each method of ranking. The individual indicators were then kriged with the parameters of the appropriate indicator variogram model to map the probability of encountering soil with the structure represented by that indicator. The model parameters of the SIVs for each ranking system were used with the data to krige the soil structure classes, and the results are compared with those for the individual indicators. The relations between maps of soil structure and selected wavebands from aerial photographs are examined as basis for planning surveys of soil structure. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A reduction in the numbers of macroinvertebrates present in soil may have a negative effect on soil structure, infiltration rates, and gas exchanges. Soil pollution by metal is known to have a detrimental effect on soil macrofauna. The aim of the present study was to evaluate (1) direct and indirect effects of soil pollution on soil macroinvertebrate bioturbation and (2) effects of the two macroinvertebrate communities found in a polluted and a nonpolluted area (one supposed sensitive, the other tolerant to metals) on burrow systems parameters. Macroinvertebrate porosity was studied using X-ray tomography. Three-dimensional reconstructions and characterisation of the burrow system were obtained using image analysis. Results showed that metal pollution principally affected the spatial distribution of macropores (more macropores were found near the soil surface) and the shape of the burrow system (branching rate was higher in the polluted soil), whereas soil macroinvertebrate composition principally affects burrow density parameters (the number of burrows was higher for the sensitive macroinvertebrate community).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Soils represent a large carbon pool, approximately 1500 Gt, which is equivalent to almost three times the quantity stored in terrestrial biomass and twice the amount stored in the atmosphere. Any modification of land use or land management can induce variations in soil carbon stocks, even in agricultural systems that are perceived to be in a steady state. Tillage practices often induce soil aerobic conditions that are favourable to microbial activity and may lead to a degradation of soil structure. As a result, mineralisation of soil organic matter increases in the long term. The adoption of no-tillage systems and the maintenance of a permanent vegetation cover using Direct seeding Mulch-based Cropping system or DMC, may increase carbon levels in the topsoil. In Brazil, no-tillage practices (mainly DMC), were introduced approximately 30 years ago in the south in the Parana state, primarily as a means of reducing erosion. Subsequently, research has begun to study the management of the crop waste products and their effects on soil fertility, either in terms of phosphorus management, as a means of controlling soil acidity, or determining how manures can be applied in a more localised manner. The spread of no-till in Brazil has involved a large amount of extension work. The area under no-tillage is still increasing in the centre and north of the country and currently occupies ca. 20 million hectares, covering a diversity of environmental conditions, cropping systems and management practices. Most studies of Brazilian soils give rates of carbon storage in the top 40 cm of the soil of 0.4 to 1.7 t C ha(-1) per year, with the highest rates in the Cerrado region. However, caution must be taken when analysing DMC systems in terms of carbon sequestration. Comparisons should include changes in trace gas fluxes and should not be limited to a consideration of carbon storage in the soil alone if the full implications for global warming are to be assessed.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cover crops are sown to provide a number of ecosystem services including nutrient management, mitigation of diffuse pollution, improving soil structure and organic matter content, weed suppression, nitrogen fixation and provision of resources for biodiversity. Although the decision to sow a cover crop may be driven by a desire to achieve just one of these objectives, the diversity of cover crops species and mixtures available means that there is potential to combine a number of ecosystem services within the same crop and growing season. Designing multi-functional cover crops would potentially help to reconcile the often conflicting agronomic and environmental agendas and contribute to the optimal use of land. We present a framework for integrating multiple ecosystem services delivered by cover crops that aims to design a mixture of species with complementary growth habit and functionality. The optimal number and identity of species will depend on the services included in the analysis, the functional space represented by the available species pool and the community dynamics of the crop in terms of dominance and co-existence. Experience from a project that applied the framework to fertility building leys in organic systems demonstrated its potential and emphasised the importance of the initial choice of species to include in the analysis

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Clubroot disease and the causal microbe Plasmodiophora brassicae offer abundant challenges to agriculturists and biological scientists. This microbe is well fitted for the environments which it inhabits. Plasmodiophora brassicae exists in soil as microscopic well protected resting spores and then grows actively and reproduces while shielded inside the roots of host plants. The pathogen is active outside the host for only short periods. Consequently, scientific studies are made challenging by the biological context of the host and pathogen and the technology required to investigate and understand that relationship. Controlling clubroot disease is a challenge for farmers, crop consultants and plant pathology practitioners because of the limited options which are available. Full symptom expression happens solely in members of the Brassicaceae family. Currently, only a few genes expressing strong resistance to P. brassicae are known and readily available. Agrochemical control is similarly limited by difficulties in molecule formulation which combines efficacy with environmental acceptability. Manipulation of husbandry encouraging improvements in soil structure, texture, nutrient composition and moisture content can reduce populations of P. brassicae. Integrating such strategies with rotation and crop management will reduce but not eliminate this disease. There are indications that forms of biological competition may be mobilised as additions to integrated control strategies. The aim of this review is to chart key themes in the development of scientific biological understanding of this host-pathogen relationship by offering signposts to grapple with clubroot disease which devastates crops and their profitability. Particular attention is given to the link between soil and nutrient chemistry and activity of this microbe.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A cylinder experiment was conducted in northern Greece during 2005 and 2006 to assess emergence dynamics of barnyardgrass (Echinochloa crus-galli (L.) Beauv.) and jimsonweed (Datura stramonium L.) in the case of a switch from conventional to conservation tillage systems (CT). Emergence was surveyed from two burial depths (5 and 10 cm) and with simulation of reduced tillage (i.e. by soil disturbance) and no-till conditions. Barnyardgrass emergence was significantly affected by burial depth, having greater emergence from 5 cm depth (96%) although even 78% of seedlings emerged from 10 cm depth after the two years of study. Emergence of barnyardgrass was stable across years from the different depths and tillage regimes. Jimsonweed seeds showed lower germination than barnyardgrass during the study period, whereas its emergence was significantly affected by soil disturbance having 41% compared to 28% without disturbance. A burial depth x soil disturbance interaction was also determined, which showed higher emergence from 10 cm depth with soil disturbance. Jimsonweed was found to have significantly higher emergence from 10 cm depth with soil disturbance in Year 2. Seasonal emergence timing of barnyardgrass did not vary between the different burial depth and soil disturbance regimes, as it started in April and lasted until end of May in both years. Jimsonweed showed a bimodal pattern, with first emergence starting end of April until mid-May and the second ranging from mid-June to mid-August from 10 cm burial depth and from mid-July to mid-August from 5 cm depth, irrespective of soil disturbance in both cases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To determine the effects of defoliation on microbial community structure, rhizosphere soil samples were taken pre-, and post-defoliation from the root tip and mature root regions of Trifolium repens L. and Lolium perenne L. Microbial DNA isolated from samples was used to generate polymerase chain reaction-denaturing gradient gel electrophoresis molecular profiles of bacterial and fungal communities. Bacterial plate counts were also obtained. Neither plant species nor defoliation affected the bacterial and fungal community structures in both the root tip and mature root regions, but there were significant differences in the bacterial and fungal community profiles between the two root regions for each plant. Prior to defoliation, there was no difference between plants for bacterial plate counts of soils from the root tip regions; however, counts were greater in the mature root region of L. perenne than T. repens. Bacterial plate counts for T. repens were higher in the root tip than the mature root region. After defoliation, there was no effect of plant type, position along the root or defoliation status on bacterial plate counts, although there were significant increases in bacterial plate counts with time. The results indicate that a general effect existed during maturation in the root regions of each plant, which had a greater impact on microbial community structure than either plant type or the effect of defoliation. In addition there were no generic consequences with regard to microbial populations in the rhizosphere as a response to plant defoliation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Invasive plant species have been shown to alter the microbial community composition of the soils they invade and it is suggested that this below-ground perturbation of potential pathogens, decomposers or symbionts may feedback positively to allow invasive success. Whether these perturbations are mediated through specific components of root exudation are not understood. We focussed on 8-hydroxyquinoline, a putative allelochemical of Centaurea diffusa (diffuse knapweed) and used an artificial root system to differentiate the effects of 8-hydroxyquinoline against a background of total rhizodeposition as mimicked through supply of a synthetic exudate solution. In soil proximal (0-10 cm) to the artificial root, synthetic exudates had a highly significant (P < 0.001) influence on dehydrogenase, fluorescein diacetate hydrolysis and urease activity. in addition, 8-hydroxyquinoline was significant (p = 0.003) as a main effect on dehydrogenase activity and interacted with synthetic exudates to affect urease activity (p = 0.09). Hierarchical cluster analysis of 16S rDNA-based DGGE band patterns also identified a primary affect of synthetic exudates and a secondary affect of 8-hydroxyquinoline on bacterial community structure. Thus, we show that the artificial rhizosphere produced by the synthetic exudates was the predominant effect, but, that the influence of the 8-hydroxyquinoline signal on the activity and structure of soil microbial communities could also be detected. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Model catalysts of Pd nanoparticles and films on TiO2 (I 10) were fabricated by metal vapour deposition (MVD). Molecular beam measurements show that the particles are active for CO adsorption, with a global sticking probability of 0.25, but that they are deactivated by annealing above 600 K, an effect indicative of SMSI. The Pd nanoparticles are single crystals oriented with their (I 11) plane parallel to the surface plane of the titania. Analysis of the surface by atomic resolution STM shows that new structures have formed at the surface of the Pd nanoparticles and films after annealing above 800 K. There are only two structures, a zigzag arrangement and a much more complex "pinwheel" structure. The former has a unit cell containing 7 atoms, and the latter is a bigger unit cell containing 25 atoms. These new structures are due to an overlayer of titania that has appeared on the surface of the Pd nanoparticles after annealing, and it is proposed that the surface layer that causes the SMSI effect is a mixed alloy of Pd and Ti, with only two discrete ratios of atoms: Pd/Ti of 1: 1 (pinwheel) and 1:2 (zigzag). We propose that it is these structures that cause the SMSI effect. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nanoscale zerovalent iron (nZVI) has potential for the remediation of organochlorine-contaminated environments. Environmental safety concerns associated with in situ deployment of nZVI include potential negative impacts on indigenous microbes whose biodegradative functions could contribute to contaminant remediation. With respect to a two-step polychlorinated biphenyl remediation scenario comprising nZVI dechlorination followed by aerobic biodegradation, we examined the effect of polyacrylic acid (PAA)-coated nZVI (mean diameter = 12.5 nm) applied at 10 g nZVI kg−1 to Aroclor-1242 contaminated and uncontaminated soil over 28 days. nZVI had a limited effect on Aroclor congener profiles, but, either directly or indirectly via changes to soil physico-chemical conditions (pH, Eh), nZVI addition caused perturbation to soil bacterial community composition, and reduced the activity of chloroaromatic mineralizing microorganisms. We conclude that nZVI addition has the potential to inhibit microbial functions that could be important for PCB remediation strategies combining nZVI treatment and biodegradation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The affinity of anthocyanins for human serum albumin (HSA) was determined by a fluorescence quenching method. The effects of pH and structure of anthocyanins on the binding constants were studied. The constants for binding of anthocyanins to HSA ranged from 1.08 x 10^5 M-1 to 13.16 x 10^5 M-1. A hydrophobic effect at acidic pH was shown by the relatively high positive entropy values under the conditions studied. Electrostatic interactions including hydrogen bonding contributed to the binding at pH 7.4. The effect of structure of anthocyanins on the affinity was pH dependent, particularly the effect of additional hydroxyl substituents. Hydroxyl substituents and glycosylation of anthocyanins decreased the affinity for binding to HSA at lower pH (especially pH 4), but increased the strength of binding at pH 7.4. In contrast, methylation of a hydroxyl group enhanced the binding at acidic pH, while this substitution reduced the strength of binding at pH 7.4. This paper has shown that changes in anthocyanin structure or reductions in pH, which may occur in the region of inflammatory sites, have an effect of the binding of anthocyanins to HSA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Point defects in metal oxides such as TiO2 are key to their applications in numerous technologies. The investigation of thermally induced nonstoichiometry in TiO2 is complicated by the difficulties in preparing and determining a desired degree of nonstoichiometry. We study controlled self-doping of TiO2 by adsorption of 1/8 and 1/16 monolayer Ti at the (110) surface using a combination of experimental and computational approaches to unravel the details of the adsorption process and the oxidation state of Ti. Upon adsorption of Ti, x-ray and ultraviolet photoemission spectroscopy (XPS and UPS) show formation of reduced Ti. Comparison of pure density functional theory (DFT) with experiment shows that pure DFT provides an inconsistent description of the electronic structure. To surmount this difficulty, we apply DFT corrected for on-site Coulomb interaction (DFT+U) to describe reduced Ti ions. The optimal value of U is 3 eV, determined from comparison of the computed Ti 3d electronic density of states with the UPS data. DFT+U and UPS show the appearance of a Ti 3d adsorbate-induced state at 1.3 eV above the valence band and 1.0 eV below the conduction band. The computations show that the adsorbed Ti atom is oxidized to Ti2+ and a fivefold coordinated surface Ti atom is reduced to Ti3+, while the remaining electron is distributed among other surface Ti atoms. The UPS data are best fitted with reduced Ti2+ and Ti3+ ions. These results demonstrate that the complexity of doped metal oxides is best understood with a combination of experiment and appropriate computations.