18 resultados para software project
Resumo:
Planning a project with proper considerations of all necessary factors and managing a project to ensure its successful implementation will face a lot of challenges. Initial stage in planning a project for bidding a project is costly, time consuming and usually with poor accuracy on cost and effort predictions. On the other hand, detailed information for previous projects may be buried in piles of archived documents which can be increasingly difficult to learn from the previous experiences. Project portfolio has been brought into this field aiming to improve the information sharing and management among different projects. However, the amount of information that could be shared is still limited to generic information. This paper, we report a recently developed software system COBRA to automatically generate a project plan with effort estimation of time and cost based on data collected from previous completed projects. To maximise the data sharing and management among different projects, we proposed a method of using product based planning from PRINCE2 methodology. (Automated Project Information Sharing and Management System -�COBRA) Keywords: project management, product based planning, best practice, PRINCE2
Resumo:
Consider the statement "this project should cost X and has risk of Y". Such statements are used daily in industry as the basis for making decisions. The work reported here is part of a study aimed at providing a rational and pragmatic basis for such statements. Of particular interest are predictions made in the requirements and early phases of projects. A preliminary model has been constructed using Bayesian Belief Networks and in support of this, a programme to collect and study data during the execution of various software development projects commenced in May 2002. The data collection programme is undertaken under the constraints of a commercial industrial regime of multiple concurrent small to medium scale software development projects. Guided by pragmatism, the work is predicated on the use of data that can be collected readily by project managers; including expert judgements, effort, elapsed times and metrics collected within each project.
Resumo:
A series of government initiatives has raised both the profile of ICT in the curriculum and the expectation that high quality teaching and learning resources will be accessible across electronic networks. In order for e-learning resources such as websites to have the maximum educational impact, teachers need to be involved in their design and development. Use-case analysis provides a means of defining user requirements and other constraints in such a way that software developers can produce e-learning resources which reflect teachers' professional knowledge and support their classroom practice. It has some features in common with the participatory action research used to develop other aspects of classroom practice. Two case-studies are presented: one involves the development of an on-line resource centred on transcripts of original historical documents; the other describes how 'Learning how to Learn', a major, distributed research project funded under the ESRC Teaching and Learning Research Programme is using use-case analysis to develop web resources and services.
Resumo:
This paper addresses the need for accurate predictions on the fault inflow, i.e. the number of faults found in the consecutive project weeks, in highly iterative processes. In such processes, in contrast to waterfall-like processes, fault repair and development of new features run almost in parallel. Given accurate predictions on fault inflow, managers could dynamically re-allocate resources between these different tasks in a more adequate way. Furthermore, managers could react with process improvements when the expected fault inflow is higher than desired. This study suggests software reliability growth models (SRGMs) for predicting fault inflow. Originally developed for traditional processes, the performance of these models in highly iterative processes is investigated. Additionally, a simple linear model is developed and compared to the SRGMs. The paper provides results from applying these models on fault data from three different industrial projects. One of the key findings of this study is that some SRGMs are applicable for predicting fault inflow in highly iterative processes. Moreover, the results show that the simple linear model represents a valid alternative to the SRGMs, as it provides reasonably accurate predictions and performs better in many cases.
Resumo:
This paper describes some of the preliminary outcomes of a UK project looking at control education. The focus is on two aspects: (i) the most important control concepts and theories for students doing just one or two courses and (ii) the effective use of software to improve student learning and engagement. There is also some discussion of the correct balance between teaching theory and practise. The paper gives examples from numerous UK universities and some industrial comment.
An empirical study of process-related attributes in segmented software cost-estimation relationships
Resumo:
Parametric software effort estimation models consisting on a single mathematical relationship suffer from poor adjustment and predictive characteristics in cases in which the historical database considered contains data coming from projects of a heterogeneous nature. The segmentation of the input domain according to clusters obtained from the database of historical projects serves as a tool for more realistic models that use several local estimation relationships. Nonetheless, it may be hypothesized that using clustering algorithms without previous consideration of the influence of well-known project attributes misses the opportunity to obtain more realistic segments. In this paper, we describe the results of an empirical study using the ISBSG-8 database and the EM clustering algorithm that studies the influence of the consideration of two process-related attributes as drivers of the clustering process: the use of engineering methodologies and the use of CASE tools. The results provide evidence that such consideration conditions significantly the final model obtained, even though the resulting predictive quality is of a similar magnitude.
Resumo:
Current e-learning systems are increasing their importance in higher education. However, the state of the art of e-learning applications, besides the state of the practice, does not achieve the level of interactivity that current learning theories advocate. In this paper, the possibility of enhancing e-learning systems to achieve deep learning has been studied by replicating an experiment in which students had to learn basic software engineering principles. One group learned these principles using a static approach, while the other group learned the same principles using a system-dynamics-based approach, which provided interactivity and feedback. The results show that, quantitatively, the latter group achieved a better understanding of the principles; furthermore, qualitatively, they enjoyed the learning experience
Resumo:
We describe a compositional framework, together with its supporting toolset, for hardware/software co-design. Our framework is an integration of a formal approach within a traditional design flow. The formal approach is based on Interval Temporal Logic and its executable subset, Tempura. Refinement is the key element in our framework because it will derive from a single formal specification of the system the software and hardware parts of the implementation, while preserving all properties of the system specification. During refinement simulation is used to choose the appropriate refinement rules, which are applied automatically in the HOL system. The framework is illustrated with two case studies. The work presented is part of a UK collaborative research project between the Software Technology Research Laboratory at the De Montfort University and the Oxford University Computing Laboratory.
Resumo:
As integrated software solutions reshape project delivery, they alter the bases for collaboration and competition across firms in complex industries. This paper synthesises and extends literatures on strategy in project-based industries and digitally-integrated work to understand how project-based firms interact with digital infrastructures for project delivery. Four identified strategies are to: 1) develop and use capabilities to shape the integrated software solutions that are used in projects; 2) co-specialize, developing complementary assets to work repeatedly with a particular integrator firm; 3) retain flexibility by developing and maintaining capabilities in multiple digital technologies and processes; and 4) manage interfaces, translating work into project formats for coordination while hiding proprietary data and capabilities in internal systems. The paper articulates the strategic importance of digital infrastructures for delivery as well as product architectures. It concludes by discussing managerial implications of the identified strategies and areas for further research.
Resumo:
Many weeds occur in patches but farmers frequently spray whole fields to control the weeds in these patches. Given a geo-referenced weed map, technology exists to confine spraying to these patches. Adoption of patch spraying by arable farmers has, however, been negligible partly due to the difficulty of constructing weed maps. Building on previous DEFRA and HGCA projects, this proposal aims to develop and evaluate a machine vision system to automate the weed mapping process. The project thereby addresses the principal technical stumbling block to widespread adoption of site specific weed management (SSWM). The accuracy of weed identification by machine vision based on a single field survey may be inadequate to create herbicide application maps. We therefore propose to test the hypothesis that sufficiently accurate weed maps can be constructed by integrating information from geo-referenced images captured automatically at different times of the year during normal field activities. Accuracy of identification will also be increased by utilising a priori knowledge of weeds present in fields. To prove this concept, images will be captured from arable fields on two farms and processed offline to identify and map the weeds, focussing especially on black-grass, wild oats, barren brome, couch grass and cleavers. As advocated by Lutman et al. (2002), the approach uncouples the weed mapping and treatment processes and builds on the observation that patches of these weeds are quite stable in arable fields. There are three main aspects to the project. 1) Machine vision hardware. Hardware component parts of the system are one or more cameras connected to a single board computer (Concurrent Solutions LLC) and interfaced with an accurate Global Positioning System (GPS) supplied by Patchwork Technology. The camera(s) will take separate measurements for each of the three primary colours of visible light (red, green and blue) in each pixel. The basic proof of concept can be achieved in principle using a single camera system, but in practice systems with more than one camera may need to be installed so that larger fractions of each field can be photographed. Hardware will be reviewed regularly during the project in response to feedback from other work packages and updated as required. 2) Image capture and weed identification software. The machine vision system will be attached to toolbars of farm machinery so that images can be collected during different field operations. Images will be captured at different ground speeds, in different directions and at different crop growth stages as well as in different crop backgrounds. Having captured geo-referenced images in the field, image analysis software will be developed to identify weed species by Murray State and Reading Universities with advice from The Arable Group. A wide range of pattern recognition and in particular Bayesian Networks will be used to advance the state of the art in machine vision-based weed identification and mapping. Weed identification algorithms used by others are inadequate for this project as we intend to collect and correlate images collected at different growth stages. Plants grown for this purpose by Herbiseed will be used in the first instance. In addition, our image capture and analysis system will include plant characteristics such as leaf shape, size, vein structure, colour and textural pattern, some of which are not detectable by other machine vision systems or are omitted by their algorithms. Using such a list of features observable using our machine vision system, we will determine those that can be used to distinguish weed species of interest. 3) Weed mapping. Geo-referenced maps of weeds in arable fields (Reading University and Syngenta) will be produced with advice from The Arable Group and Patchwork Technology. Natural infestations will be mapped in the fields but we will also introduce specimen plants in pots to facilitate more rigorous system evaluation and testing. Manual weed maps of the same fields will be generated by Reading University, Syngenta and Peter Lutman so that the accuracy of automated mapping can be assessed. The principal hypothesis and concept to be tested is that by combining maps from several surveys, a weed map with acceptable accuracy for endusers can be produced. If the concept is proved and can be commercialised, systems could be retrofitted at low cost onto existing farm machinery. The outputs of the weed mapping software would then link with the precision farming options already built into many commercial sprayers, allowing their use for targeted, site-specific herbicide applications. Immediate economic benefits would, therefore, arise directly from reducing herbicide costs. SSWM will also reduce the overall pesticide load on the crop and so may reduce pesticide residues in food and drinking water, and reduce adverse impacts of pesticides on non-target species and beneficials. Farmers may even choose to leave unsprayed some non-injurious, environmentally-beneficial, low density weed infestations. These benefits fit very well with the anticipated legislation emerging in the new EU Thematic Strategy for Pesticides which will encourage more targeted use of pesticides and greater uptake of Integrated Crop (Pest) Management approaches, and also with the requirements of the Water Framework Directive to reduce levels of pesticides in water bodies. The greater precision of weed management offered by SSWM is therefore a key element in preparing arable farming systems for the future, where policy makers and consumers want to minimise pesticide use and the carbon footprint of farming while maintaining food production and security. The mapping technology could also be used on organic farms to identify areas of fields needing mechanical weed control thereby reducing both carbon footprints and also damage to crops by, for example, spring tines. Objective i. To develop a prototype machine vision system for automated image capture during agricultural field operations; ii. To prove the concept that images captured by the machine vision system over a series of field operations can be processed to identify and geo-reference specific weeds in the field; iii. To generate weed maps from the geo-referenced, weed plants/patches identified in objective (ii).
Resumo:
What happens when digital coordination practices are introduced into the institutionalized setting of an engineering project? This question is addressed through an interpretive study that examines how a shared digital model becomes used in the late design stages of a major station refurbishment project. The paper contributes by mobilizing the idea of ‘hybrid practices’ to understand the diverse patterns of activity that emerge to manage digital coordination of design. It articulates how engineering and architecture professions develop different relationships with the shared model; the design team negotiates paper-based practices across organizational boundaries; and diverse practitioners probe the potential and limitations of the digital infrastructure. While different software packages and tools have become linked together into an integrated digital infrastructure, these emerging hybrid practices contrast with the interactions anticipated in practice and policy guidance and presenting new opportunities and challenges for managing project delivery. The study has implications for researchers working in the growing field of empirical work on engineering project organizations as it shows the importance of considering, and suggests new ways to theorise, the introduction of digital coordination practices into these institutionalized settings.
Resumo:
Despite the increasing use of groupware technologies in education, there is little evidence of their impact, especially within an enquiry-based learning (EBL) context. In this paper, we examine the use of a commercial standard Group Intelligence software called GroupSystems®ThinkTank. To date, ThinkTank has been adopted mainly in the USA and supports teams in generating ideas, categorising, prioritising, voting and multi-criteria decision-making and automatically generates a report at the end of each session. The software was used by students carrying out an EBL project, set by employers, for a full academic year. The criteria for assessing the impact of ThinkTank on student learning were those of creativity, participation, productivity, engagement and understanding. Data was collected throughout the year using a combination of interviews and questionnaires, and written feedback from employers. The overall findings show an increase in levels of productivity and creativity, evidence of a deeper understanding of their work but some variation in attitudes towards participation in the early stages of the project.