50 resultados para social field theory
Resumo:
The self-consistent field theory (SCFT) prediction for the compression force between two semi-dilute polymer brushes is compared to the benchmark experiments of Taunton et al. [Nature, 1988, 332, 712]. The comparison is done with previously established parameters, and without any fitting parameters whatsoever. The SCFT provides a significant quantitative improvement over the classical strong-stretching theory (SST), yielding excellent quantitative agreement with the experiment. Contrary to earlier suggestions, chain fluctuations cannot be ignored for normal experimental conditions. Although the analytical expressions of SST provide invaluable aids to understanding the qualitative behavior of polymeric brushes, the numerical SCFT is necessary in order to provide quantitatively accurate predictions.
Resumo:
The self-consistent field theory (SCFT) introduced by Helfand for diblock copolymer melts is expected to converge to the strong-segregation theory (SST) of Semenov in the asymptotic limit, $\chi N \rightarrow \infty$. However, past extrapolations of the lamellar/cylinder and cylinder/sphere phase boundaries, within the standard unit-cell approximation, have cast some doubts on whether or not this is actually true. Here we push the comparison further by extending the SCFT calculations to $\chi N = 512,000$, by accounting for exclusion zones in the coronae of the cylindrical and spherical unit cells, and by examining finite-segregation corrections to SST. In doing so, we provide the first compelling evidence that SCFT does indeed reduce to SST.
Resumo:
An efficient numerical self-consistent field theory (SCFT) algorithm is developed for treating structured polymers on spherical surfaces. The method solves the diffusion equations of SCFT with a pseudospectral approach that combines a spherical-harmonics expansion for the angular coordinates with a modified real-space Crank–Nicolson method for the radial direction. The self-consistent field equations are solved with Anderson-mixing iterations using dynamical parameters and an alignment procedure to prevent angular drift of the solution. A demonstration of the algorithm is provided for thin films of diblock copolymer grafted to the surface of a spherical core, in which the sequence of equilibrium morphologies is predicted as a function of diblock composition. The study reveals an array of interesting behaviors as the block copolymer pattern is forced to adapt to the finite surface area of the sphere.
Resumo:
We study inverse problems in neural field theory, i.e., the construction of synaptic weight kernels yielding a prescribed neural field dynamics. We address the issues of existence, uniqueness, and stability of solutions to the inverse problem for the Amari neural field equation as a special case, and prove that these problems are generally ill-posed. In order to construct solutions to the inverse problem, we first recast the Amari equation into a linear perceptron equation in an infinite-dimensional Banach or Hilbert space. In a second step, we construct sets of biorthogonal function systems allowing the approximation of synaptic weight kernels by a generalized Hebbian learning rule. Numerically, this construction is implemented by the Moore–Penrose pseudoinverse method. We demonstrate the instability of these solutions and use the Tikhonov regularization method for stabilization and to prevent numerical overfitting. We illustrate the stable construction of kernels by means of three instructive examples.
Resumo:
We solve eight partial-differential, two-dimensional, nonlinear mean field equations, which describe the dynamics of large populations of cortical neurons. Linearized versions of these equations have been used to generate the strong resonances observed in the human EEG, in particular the α-rhythm (8–), with physiologically plausible parameters. We extend these results here by numerically solving the full equations on a cortex of realistic size, which receives appropriately “colored” noise as extra-cortical input. A brief summary of the numerical methods is provided. As an outlook to future applications, we explain how the effects of GABA-enhancing general anaesthetics can be simulated and present first results.
Resumo:
Anesthetic and analgesic agents act through a diverse range of pharmacological mechanisms. Existing empirical data clearly shows that such "microscopic" pharmacological diversity is reflected in their "macroscopic" effects on the human electroencephalogram (EEG). Based on a detailed mesoscopic neural field model we theoretically posit that anesthetic induced EEG activity is due to selective parametric changes in synaptic efficacy and dynamics. Specifically, on the basis of physiologically constrained modeling, it is speculated that the selective modification of inhibitory or excitatory synaptic activity may differentially effect the EEG spectrum. Such results emphasize the importance of neural field theories of brain electrical activity for elucidating the principles whereby pharmacological agents effect the EEG. Such insights will contribute to improved methods for monitoring depth of anesthesia using the EEG.
Resumo:
The term neural population models (NPMs) is used here as catchall for a wide range of approaches that have been variously called neural mass models, mean field models, neural field models, bulk models, and so forth. All NPMs attempt to describe the collective action of neural assemblies directly. Some NPMs treat the densely populated tissue of cortex as an excitable medium, leading to spatially continuous cortical field theories (CFTs). An indirect approach would start by modelling individual cells and then would explain the collective action of a group of cells by coupling many individual models together. In contrast, NPMs employ collective state variables, typically defined as averages over the group of cells, in order to describe the population activity directly in a single model. The strength and the weakness of his approach are hence one and the same: simplification by bulk. Is this justified and indeed useful, or does it lead to oversimplification which fails to capture the pheno ...
Resumo:
This paper investigates finite-stretching corrections to the classical Milner-Witten-Cates theory for semi-dilute polymer brushes in a good solvent. The dominant correction to the free energy originates from an entropic repulsion caused by the impenetrability of the grafting surface, which produces a depletion of segments extending a distance $\mu \propto L^{-1}$ from the substrate, where $L$ is the classical brush height. The next most important correction is associated with the translational entropy of the chain ends, which creates the well-known tail where a small population of chains extend beyond the classical brush height by a distance $\xi \propto L^{-1/3}$. The validity of these corrections is confirmed by quantitative comparison with numerical self-consistent field theory.
Resumo:
We investigate the ability of an applied electric field to convert the morphology of a diblock-copolymer thin film from a monolayer of spherical domains embedded in the matrix to cylindrical domains that penetrate through the matrix. As expected, the applied field increases the relative stability of cylindrical domains, while simultaneously reducing the energy barrier that impedes the transition to cylinders. The effectiveness of the field is enhanced by a large dielectric contrast between the two block-copolymer components, particularly when the low-dielectric contrast component forms the matrix. Furthermore, the energy barrier is minimized by selecting sphere-forming diblock copolymers that are as compositionally symmetric as possible. Our calculations, which are the most quantitatively reliable to date, are performed using a numerically precise spectral algorithm based on self-consistent-field theory supplemented with an exact treatment for linear dielectric materials.
Resumo:
We investigate thin films of cylinder-forming diblock copolymer confined between electrically charged parallel plates, using self-consistent-field theory ( SCFT) combined with an exact treatment for linear dielectric materials. Our study focuses on the competition between the surface interactions, which tend to orient cylinder domains parallel to the plates, and the electric field, which favors a perpendicular orientation. The effect of the electric field on the relative stability of the competing morphologies is demonstrated with equilibrium phase diagrams, calculated with the aid of a weak-field approximation. As hoped, modest electric fields are shown to have a significant stabilizing effect on perpendicular cylinders, particularly for thicker films. Our improved SCFT-based treatment removes most of the approximations implemented by previous approaches, thereby managing to resolve outstanding qualitative inconsistencies among different approximation schemes.
Resumo:
We examine the stability of lamellar stacks in the presence of an electric field, E-0, applied normal to the lamellae. Calculations are performed with self-consistent field theory (SCFT) supplemented by an exact treatment of the electrostatic energy for linear dielectric materials. The calculations identify a critical electric field, E-0*, beyond which the lamellar stack becomes unstable with respect to undulations. This E-0* rapidly decreases towards zero as the number of lamellae in the stack diverges. Our quantitative predictions for E-0* are consistent with previous experimental measurements by Xu and co-workers.
Resumo:
This article begins by identifying a close relationship between the image of children generated by several sociologists working within the new sociology of childhood perspective and the claims and ambitions of the proponents of children's autonomy rights. The image of the child as a competent, self-controlled human agent are then subjected to observation from the perspective of Niklas Luhmann's social systems theory. The new sociology of childhood's constructivist approach is compared and contrasted with Niklas Luhmann's theory of 'operational constructivism'. The article applies tenets of Luhmann's theory, to the emergence of the new childhood sociologist's image of the child as a competent, self-controlled social agent, to the epistemological status of this image and, in particular, to claims that it derives from scientific endeavour. The article proceeds to identify two theoretical developments within sociology - sociology of identity and social agency - which have brought about fundamental changes in what may be considered 'sociological' and so 'scientific' and paved the way for sociological communications about what children,really are'. In conclusion, it argues that the merging of sociology with polemics, ideology, opinion and personal beliefs and, at the level of social systems, between science and politics represents in Luhmann's terms 'dedifferentiation'- a tendency he claims may have serious adverse consequences for modern society. This warning is applied to the scientific status of sociology - its claim to be able to produce 'facts' for society, upon which social systems, such as politics and law, may rely. Like the mass media, sociology may now be capable of producing only information, and not facts, about children.