29 resultados para seminiferous tubule epithelium


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The emergence in 2009 of a swine-origin H1N1 influenza virus as the first pandemic of the 21st Century is a timely reminder of the international public health impact of influenza viruses, even those associated with mild disease. The widespread distribution of highly pathogenic H5N1 influenza virus in the avian population has spawned concern that it may give rise to a human influenza pandemic. The mortality rate associated with occasional human infection by H5N1 virus approximates 60%, suggesting that an H5N1 pandemic would be devastating to global health and economy. To date, the H5N1 virus has not acquired the propensity to transmit efficiently between humans. The reasons behind this are unclear, especially given the high mutation rate associated with influenza virus replication. Here we used a panel of recombinant H5 hemagglutinin (HA) variants to demonstrate the potential for H5 HA to bind human airway epithelium, the predominant target tissue for influenza virus infection and spread. While parental H5 HA exhibited limited binding to human tracheal epithelium, introduction of selected mutations converted the binding profile to that of a current human influenza strain HA. Strikingly, these amino-acid changes required multiple simultaneous mutations in the genomes of naturally occurring H5 isolates. Moreover, H5 HAs bearing intermediate sequences failed to bind airway tissues and likely represent mutations that are an evolutionary "dead end." We conclude that, although genetic changes that adapt H5 to human airways can be demonstrated, they may not readily arise during natural virus replication. This genetic barrier limits the likelihood that current H5 viruses will originate a human pandemic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe the characterization of influenza A virus infection of an established in vitro model of human pseudostratified mucociliary airway epithelium (HAE). Sialic acid receptors for both human and avian viruses, alpha-2,6- and alpha-2,3-linked sialic acids, respectively, were detected on the HAE cell surface, and their distribution accurately reflected that in human tracheobronchial tissue. Nonciliated cells present a higher proportion of alpha-2,6-linked sialic acid, while ciliated cells possess both sialic acid linkages. Although we found that human influenza viruses infected both ciliated and nonciliated cell types in the first round of infection, recent human H3N2 viruses infected a higher proportion of nonciliated cells in HAE than a 1968 pandemic-era human virus, which infected proportionally more ciliated cells. In contrast, avian influenza viruses exclusively infected ciliated cells. Although a broad-range neuraminidase abolished infection of HAE by human parainfluenza virus type 3, this treatment did not significantly affect infection by influenza viruses. All human viruses replicated efficiently in HAE, leading to accumulation of nascent virus released from the apical surface between 6 and 24 h postinfection with a low multiplicity of infection. Avian influenza A viruses also infected HAE, but spread was limited compared to that of human viruses. The nonciliated cell tropism of recent human H3N2 viruses reflects a preference for the sialic acid linkages displayed on these cell types and suggests a drift in the receptor binding phenotype of the H3 hemagglutinin protein as it evolves in humans away from its avian virus precursor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first pandemic of the 21(st) century, pandemic H1N1 2009 (pH1N1 2009), emerged from a swine-origin source. Although human infections with swine-origin influenza have been reported previously, none went on to cause a pandemic or indeed any sustained human transmission. In previous pandemics, specific residues in the receptor binding site of the haemagglutinin (HA) protein of influenza have been associated with the ability of the virus to transmit between humans. In the present study we investigated the effect of residue 227 in HA on cell tropism and transmission of pH1N1 2009. In pH1N1 2009 and recent seasonal H1N1 viruses this residue is glutamic acid, whereas in swine influenza it is alanine. Using human airway epithelium, we show a differential cell tropism of pH1N1 2009 compared to pH1N1 2009 E227A and swine influenza suggesting this residue may alter the sialic acid conformer binding preference of the HA. Furthermore, both pH1N1 2009 E227A and swine influenza multi-cycle viral growth was found to be attenuated in comparison to pH1N1 2009 in human airway epithelium. However this altered tropism and viral growth in human airway epithelium did not abrogate respiratory droplet transmission of pH1N1 2009 E227A in ferrets. Thus, acquisition of E at residue 227 was not solely responsible for the ability of pH1N1 2009 to transmit between humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enterohaemorrhagic Escherichia coli O157 : H7 is a bacterial pathogen that can cause haemorrhagic colitis and haemolytic uremic syndrome. In the primary reservoir host, cattle, the terminal rectum is the principal site of E. coli O157 colonization. In this study, bovine terminal rectal primary epithelial cells were used to examine the role of H7 flagella in epithelial adherence. Binding of a fliC(H7) mutant O157 strain to rectal epithelium was significantly reduced as was binding of the flagellated wild-type strain following incubation with H7-specific antibodies. Complementation of fliC(H7) mutant O157 strain with fliC(H7) restored the adherence to wild-type levels; however, complementation with fliC(H6) did not restore it. High-resolution ultrastructural and imunofluorescence studies demonstrated the presence of abundant flagella forming physical contact points with the rectal epithelium. Binding to terminal rectal epithelium was specific to H7 by comparison with other flagellin types tested. In-cell Western assays confirmed temporal expression of flagella during O157 interaction with epithelium, early expression was suppressed during the later stages of microcolony and attaching and effacing lesion formation. H7 flagella are expressed in vivo by individual bacteria in contact with rectal mucosa. Our data demonstrate that the H7 flagellum acts as an adhesin to bovine intestinal epithelium and its involvement in this crucial initiating step for colonization indicates that H7 flagella could be an important target in intervention strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polarized epithelial cells are responsible for the vectorial transport of solutes and have a key role in maintaining body fluid and electrolyte homeostasis. Such cells contain structurally and functionally distinct plasma membrane domains. Brush border and basolateral membranes of renal and intestinal epithelial cells can be separated using a number of different separation techniques, which allow their different transport functions and receptor expressions to be studied. In this communication, we report a proteomic analysis of these two membrane segments, apical and basolateral, obtained from the rat renal cortex isolated by two different methods: differential centrifugation and free-flow electrophoresis. The study was aimed at assessing the nature of the major proteins isolated by these two separation techniques. Two analytical strategies were used: separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) at the protein level or by cation-exchange high-performance liquid chromatography (HPLC) after proteolysis (i.e., at the peptide level). Proteolytic peptides derived from the proteins present in gel pieces or from HPLC fractions after proteolysis were sequenced by on-line liquid chromatography-tandem mass spectrometry (LC-MS/MS). Several hundred proteins were identified in each membrane section. In addition to proteins known to be located at the apical and basolateral membranes, several novel proteins were also identified. In particular, a number of proteins with putative roles in signal transduction were identified in both membranes. To our knowledge, this is the first reported study to try and characterize the membrane proteome of polarized epithelial cells and to provide a data set of the most abundant proteins present in renal proximal tubule cell membranes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Development of external genitalia in mammalian embryos requires tight coordination of a complex series of morphogenetic events involving outgrowth, proximodistal and dorsoventral patterning, and epithelial tubulogenesis. Hypospadias is a congenital defect of the external genitalia that results from failure of urethral tube closure. Although this is the second most common birth defect in humans, affecting one in every 250 children, the molecular mechanisms that regulate morphogenesis of the mammalian urethra are poorly understood. We report that mice lacking the IIIb isoform of fibroblast growth factor receptor 2 (Fgfr2) exhibit severe hypospadias. Urethral signaling regions, as indicated by Shh and Fgf8 expression, are established in Fgfr2-IIIb null mice; however, cell proliferation arrests prematurely and maturation of the urethral epithelium is disrupted. Fgfr2-IIIb(-/-) mutants fail to maintain the progenitor cell population required for uroepithelial renewal during tubular morphogenesis. In addition, we show that antagonism of the androgen receptor (AR) leads to loss of Fgfr2-IIIb and Fgf10 expression in the urethra, and an associated hypospadias phenotype, suggesting that these genes are downstream targets of AR during external genital development. Genitourinary defects resulting from disruption of AR activity, by either genetic or environmental factors, may therefore involve negative regulation of the Fgfr2 pathway. This represents the first example of how the developing genitourinary system integrates cues from systemically circulating steroid hormones with a locally expressed growth factor pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of normal and abnormal glandular structures in the prostate is controlled at the endocrine and paracrine levels by reciprocal interactions between epithelium and stroma. To study these processes it is useful to have an efficient method of tissue acquisition for reproducible isolation of cells from defined histologies. Here we assessed the utility of a standardized system for acquisition and growth of prostatic cells from different regions of the prostate with different pathologies, and we compared the abilities of stromal cells from normal peripheral zone (PZ-S), benign prostatic hyperplasia (BPH-S), and cancer (CA-S) to induce the growth of a human prostatic epithelial cell line (BPH-1) in vivo. Using the tissue recombination method, we showed that grafting stromal cells (from any histology) alone, or BPH-1 epithelial cells alone produced no visible grafts. Recombining PZ-S with BPH-1 cells also produced no visible grafts (n = 15). Recombining BPH-S with BPH-1 cells generated small, well-organized and sharply demarcated grafts approximately 3-4 mm in diameter (n = 9), demonstrating a moderate inductive ability of BPH-S. Recombining CA-S with BPH-1 cells generated highly disorganized grafts that completely surrounded the host kidney and invaded into adjacent renal tissue, demonstrating induction of an aggressive phenotype. We conclude that acquisition of tissue from toluidine blue dye stained specimens is an efficient method to generate high quality epithelial and/or stromal cultures. Stromal cells derived by this method from areas of BPH and cancer induce epithelial cell growth in vivo which mimics the natural history of these diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polarized epithelial cells are responsible for the vectorial transport of solutes and have a key role in maintaining body fluid and electrolyte homeostasis. Such cells contain structurally and functionally distinct plasma membrane domains. Brush border and basolateral membranes of renal and intestinal epithelial cells can be separated using a number of different separation techniques, which allow their different transport functions and receptor expressions to be studied. In this communication, we report a proteomic analysis of these two membrane segments, apical and basolateral, obtained from the rat renal cortex isolated by two different methods: differential centrifugation and free-flow electrophoresis. The study was aimed at assessing the nature of the major proteins isolated by these two separation techniques. Two analytical strategies were used: separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) at the protein level or by cation-exchange high-performance liquid chromatography (HPLC) after proteolysis (i.e., at the peptide level). Proteolytic peptides derived from the proteins present in gel pieces or from HPLC fractions after proteolysis were sequenced by on-line liquid chromatography-tandem mass spectrometry (LC-MS/MS). Several hundred proteins were identified in each membrane section. In addition to proteins known to be located at the apical and basolateral membranes, several novel proteins were also identified. In particular, a number of proteins with putative roles in signal transduction were identified in both membranes. To our knowledge, this is the first reported study to try and characterize the membrane proteome of polarized epithelial cells and to provide a data set of the most abundant proteins present in renal proximal tubule cell membranes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies in cell cultures and animal models provide evidence that probiotics can beneficially influence various stages in development of colon cancer including tumor initiation, promotion and metastasis. For example, oral administration of Lactobacillus and Bifidobacterium strains can prevent genotoxic damage to the colonic epithelium (considered to be an early stage of the carcinogenic process). Administration to rats of probiotics reduced the incidence of carcinogen-induced pre-cancerous lesions (aberrant crypt foci) in the colon. Furthermore a combination of Bifidobacterium longum and inulin (a prebiotic) was more effective than either treatment alone. In this latter study, the dietary treatments were given after exposure to the carcinogen, which suggests that the protective effects were being exerted at the promotional phase of carcinogenesis. L. acidophilus feeding has been shown to decrease the incidence of colon tumors in rats challenged with a carcinogen and B. longum reduced the incidence of carcinogeninduced colon, liver and mammary tumors. There is limited evidence from epidemiological studies for protective effects of products containing probiotics in humans, but a number of recent dietary intervention studies in healthy subjects and in polyp and cancer patients have yielded promising results on the basis of biomarkers of cancer risk and grade of colorectal tumors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE. To identify the role of Notch signaling in the human corneal epithelium. METHODS. Localization of Notch1, Notch2, Delta1, and Jagged1 in the human corneal epithelium was observed with the use of indirect immunofluorescence microscopy. Gene and protein expression of Notch receptors and ligands in human corneal epithelial cells was determined by RT-PCR and Western blot analysis, respectively. The effects of Notch inhibition (by {gamma}-secretase inhibition) and activation (by recombinant Jagged1) on epithelial cell proliferation (Ki67) and differentiation (CK3) were analyzed after Western blotting and immunocytochemistry. RESULTS. Immunofluorescent labeling localized Notch1 and Notch2 to suprabasal epithelial cell layers, whereas Delta1 and Jagged1 were observed throughout the corneal epithelium. Notch1, Notch2, Delta1, and Jagged1 genes and proteins were expressed in human corneal epithelial cells. {gamma}-Secretase inhibition resulted in decreased Notch1 and Notch2 expression, with an accompanying decrease in Ki67 and increased CK3 expression. The activation of Notch by Jagged1 resulted in the upregulation of active forms of Notch1 and 2 proteins (P < 0.05), with a concurrent increase in Ki67 (P < 0.05) and a decrease in CK3 (P < 0.05) expression. Interestingly, {gamma}-secretase inhibition in a three-dimensional, stratified corneal epithelium equivalent had no effect on Ki67 or CK3 expression. In contrast, Jagged1 activation resulted in decreased CK3 expression (P < 0.05), though neither Notch activation nor inhibition affected cell proliferation in the 3D tissue equivalent. CONCLUSIONS. Notch family members and ligands are expressed in the human corneal epithelium and appear to play pivotal roles in corneal epithelial cell differentiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pseudovivipary is an environmentally induced flowering abnormality in which vegetative shoots replace seminiferous (sexual) inflorescences. Pseudovivipary is usually retained in transplantation experiments, indicating that the trait is not solely induced by the growing environment. Pseudovivipary is the defining characteristic of Festuca vivipara, and arguably the only feature separating this species from its closest seminiferous relative, Festuca ovina. We performed phylogenetic and population genetic analysis on sympatric F. ovina and F. vivipara samples to establish whether pseudovivipary is an adaptive trait that accurately defines the separation of genetically distinct Festuca species. Chloroplast and nuclear marker-based analyses revealed that variation at a geographical level can exceed that between F. vivipara and F. ovina. We deduced that F. vivipara is a recent species that frequently arises independently within F. ovina populations and has not accumulated significant genetic differentiation from its progenitor. We inferred local gene flow between the species. We identified one amplified fragment length polymorphism marker that may be linked to a pseudovivipary-related region of the genome, and several other markers provide evidence of regional local adaptation in Festuca populations. We conclude that F. vivipara can only be appropriately recognized as a morphologically and ecologically distinct species; it lacks genetic differentiation from its relatives. This is the first report of a ‘failure in normal flowering development’ that repeatedly appears to be adaptive, such that the trait responsible for species recognition constantly reappears on a local basis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We compare the use of plastically compressed collagen gels to conventional collagen gels as scaffolds onto which corneal limbal epithelial cells (LECs) are seeded to construct an artificial corneal epithelium. LECs were isolated from bovine corneas (limbus) and seeded onto either conventional uncompressed or novel compressed collagen gels and grown in culture. Scanning electron microscopy (SEM) results showed that fibers within the uncompressed gel were loose and irregularly ordered, whereas the fibers within the compressed gel were densely packed and more evenly arranged. Quantitative analysis of LECs expansion across the surface of the two gels showed similar growth rates (p > 0.05). Under SEM, the LECs, expanded on uncompressed gels, showed a rough and heterogeneous morphology, whereas on the compressed gel, the cells displayed a smooth and homogeneous morphology. Transmission electron microscopy (TEM) results showed the compressed scaffold to contain collagen fibers of regular diameter and similar orientation resembling collagen fibers within the normal cornea. TEM and light microscopy also showed that cell–cell and cell–matrix attachment, stratification, and cell density were superior in LECs expanded upon compressed collagen gels. This study demonstrated that the compressed collagen gel was an excellent biomaterial scaffold highly suited to the construction of an artificial corneal epithelium and a significant improvement upon conventional collagen gels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To characterize the impact of gut microbiota on host metabolism, we investigated the multicompartmental metabolic profiles of a conventional mouse strain (C3H/HeJ) (n=5) and its germ-free (GF) equivalent (n=5). We confirm that the microbiome strongly impacts on the metabolism of bile acids through the enterohepatic cycle and gut metabolism (higher levels of phosphocholine and glycine in GF liver and marked higher levels of bile acids in three gut compartments). Furthermore we demonstrate that (1) well-defined metabolic differences exist in all examined compartments between the metabotypes of GF and conventional mice: bacterial co-metabolic products such as hippurate (urine) and 5-aminovalerate (colon epithelium) were found at reduced concentrations, whereas raffinose was only detected in GF colonic profiles. (2) The microbiome also influences kidney homeostasis with elevated levels of key cell volume regulators (betaine, choline, myo-inositol and so on) observed in GF kidneys. (3) Gut microbiota modulate metabotype expression at both local (gut) and global (biofluids, kidney, liver) system levels and hence influence the responses to a variety of dietary modulation and drug exposures relevant to personalized health-care investigations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Due to the heterogeneity in the biological behavior of prostate cancer, biomarkers that can reliably distinguish indolent from aggressive disease are urgently needed to inform treatment choices. METHODS: We employed 8-plex isobaric Tags for Relative and Absolute Quantitation (iTRAQ), to profile the proteomes of two distinct panels of isogenic prostate cancer cells with varying growth and metastatic potentials, in order to identify novel biomarkers associated with progression. The LNCaP, LNCaP-Pro5, and LNCaP-LN3 panel of cells represent a model of androgen-responsive prostate cancer, while the PC-3, PC-3M, and PC-3M-LN4 panel represent a model of androgen-insensitive disease. RESULTS: Of the 245 unique proteins identified and quantified (>or=95% confidence; >or=2 peptides/protein), 17 showed significant differential expression (>or=+/-1.5), in at least one of the variant LNCaP cells relative to parental cells. Similarly, comparisons within the PC-3 panel identified 45 proteins to show significant differential expression in at least one of the variant PC-3 cells compared with parental cells. Differential expression of selected candidates was verified by Western blotting or immunocytochemistry, and corresponding mRNA expression was determined by quantitative real-time PCR (qRT-PCR). Immunostaining of prostate tissue microarrays for ERp5, one of the candidates identified, showed a significant higher immunoexpression in pre-malignant lesions compared with non-malignant epithelium (P < 0.0001, Mann-Whitney U-test), and in high Gleason grade (4-5) versus low grade (2-3) cancers (P < 0.05). CONCLUSIONS: Our study provides proof of principle for the application of an 8-plex iTRAQ approach to uncover clinically relevant candidate biomarkers for prostate cancer progression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Avian intestinal spirochetosis (AIS) results from the colonization of the ceca and colorectum of poultry by pathogenic Brachyspira species. The number of cases of AIS has increased since the 2006 European Union ban on the use of antibiotic growth promoters, which, together with emerging antimicrobial resistance in Brachyspira, has driven renewed interest in alternative intervention strategies. Probiotics have been reported as protecting livestock against infection with common enteric pathogens, and here we investigate which aspects of the biology of Brachyspira they antagonize in order to identify possible interventions against AIS. The cell-free supernatants (CFS) of two Lactobacillus strains, Lactobacillus reuteri LM1 and Lactobacillus salivarius LM2, suppressed the growth of Brachyspira pilosicoli B2904 in a pH-dependent manner. In in vitro adherence and invasion assays with HT29-16E three-dimensional (3D) cells and in a novel avian cecal in vitro organ culture (IVOC) model, the adherence and invasion of B. pilosicoli in epithelial cells were reduced significantly by the presence of lactobacilli (P < 0.001). In addition, live and heat-inactivated lactobacilli inhibited the motility of B. pilosicoli, and electron microscopic observations indicated that contact between the lactobacilli and Brachyspira was crucial in inhibiting both adherence and motility. These data suggest that motility is essential for B. pilosicoli to adhere to and invade the gut epithelium and that any interference of motility may be a useful tool for the development of control strategies.