37 resultados para scarcity
Marriage value and scarcity in agricultural rents: a discussion of the findings in Childers v Ankers
Resumo:
Formal statutory guidance to arbitrators involved in settling disputes over rents for agricultural holdings is contained in the Agricultural Holdings Act 1986. The particular features of the agricultural letting market raise valuation problems which the Act itself has failed to satisfactorily address, most notably the degree to which marriage value and scarcity should be taken into account. The 1995 Court of Appeal case of Childers v Anker addresses several of the key issues. This paper seeks to explore the findings and practical implications of the case for rental valuers and arbitrators. It argues that sitting tenants may be seriously disadvantaged by the court's judgements, not least by having to pay rents on review which reflect elements of marriage value and possibly scarcity value.
Resumo:
This paper presents a global scale assessment of the impact of climate change on water scarcity. Patterns of climate change from 21 Global Climate Models (GCMs) under four SRES scenarios are applied to a global hydrological model to estimate water resources across 1339 watersheds. The Water Crowding Index (WCI) and the Water Stress Index (WSI) are used to calculate exposure to increases and decreases in global water scarcity due to climate change. 1.6 (WCI) and 2.4 (WSI) billion people are estimated to be currently living within watersheds exposed to water scarcity. Using the WCI, by 2050 under the A1B scenario, 0.5 to 3.1 billion people are exposed to an increase in water scarcity due to climate change (range across 21 GCMs). This represents a higher upper-estimate than previous assessments because scenarios are constructed from a wider range of GCMs. A substantial proportion of the uncertainty in the global-scale effect of climate change on water scarcity is due to uncertainty in the estimates for South Asia and East Asia. Sensitivity to the WCI and WSI thresholds that define water scarcity can be comparable to the sensitivity to climate change pattern. More of the world will see an increase in exposure to water scarcity than a decrease due to climate change but this is not consistent across all climate change patterns. Additionally, investigation of the effects of a set of prescribed global mean temperature change scenarios show rapid increases in water scarcity due to climate change across many regions of the globe, up to 2°C, followed by stabilisation to 4°C.
Resumo:
The catchment of the River Thames, the principal river system in southern England, provides the main water supply for London but is highly vulnerable to changes in climate, land use and population. The river is eutrophic with significant algal blooms with phosphorus assumed to be the primary chemical indicator of ecosystem health. In the Thames Basin, phosphorus is available from point sources such as wastewater treatment plants and from diffuse sources such as agriculture. In order to predict vulnerability to future change, the integrated catchments model for phosphorus (INCA-P) has been applied to the river basin and used to assess the cost-effectiveness of a range of mitigation and adaptation strategies. It is shown that scenarios of future climate and land-use change will exacerbate the water quality problems, but a range of mitigation measures can improve the situation. A cost-effectiveness study has been undertaken to compare the economic benefits of each mitigation measure and to assess the phosphorus reductions achieved. The most effective strategy is to reduce fertilizer use by 20% together with the treatment of effluent to a high standard. Such measures will reduce the instream phosphorus concentrations to close to the EU Water Framework Directive target for the Thames.
Resumo:
Water scarcity severely impairs food security and economic prosperity in many countries today. Expected future population changes will, in many countries as well as globally, increase the pressure on available water resources. On the supply side, renewable water resources will be affected by projected changes in precipitation patterns, temperature, and other climate variables. Here we use a large ensemble of global hydrological models (GHMs) forced by five global climate models and the latest greenhouse-gas concentration scenarios (Representative Concentration Pathways) to synthesize the current knowledge about climate change impacts on water resources. We show that climate change is likely to exacerbate regional and global water scarcity considerably. In particular, the ensemble average projects that a global warming of 2 degrees C above present (approximately 2.7 degrees C above preindustrial) will confront an additional approximate 15% of the global population with a severe decrease in water resources and will increase the number of people living under absolute water scarcity (< 500 m(3) per capita per year) by another 40% (according to some models, more than 100%) compared with the effect of population growth alone. For some indicators of moderate impacts, the steepest increase is seen between the present day and 2 degrees C, whereas indicators of very severe impacts increase unabated beyond 2 degrees C. At the same time, the study highlights large uncertainties associated with these estimates, with both global climate models and GHMs contributing to the spread. GHM uncertainty is particularly dominant in many regions affected by declining water resources, suggesting a high potential for improved water resource projections through hydrological model development.
Resumo:
This paper reviews the current knowledge of climatic risks and impacts in South Asia associated with anthropogenic warming levels of 1.5°C to 4°C above pre-industrial values in the 21st century. It is based on the World Bank Report “Turn Down the Heat, Climate Extremes, Regional Impacts and the Case for Resilience” (2013). Many of the climate change impacts in the region, which appear quite severe even with relatively modest warming of 1.5–2°C, pose significant hazards to development. For example, increased monsoon variability and loss or glacial meltwater will likely confront populations with ongoing and multiple challenges. The result is a significant risk to stable and reliable water resources for the region, with increases in peak flows potentially causing floods and dry season flow reductions threatening agriculture. Irrespective of the anticipated economic development and growth, climate projections indicate that large parts of South Asia’s growing population and especially the poor are likely to remain highly vulnerable to climate change.
Resumo:
Recent research outlined by the Intergovernmental Panel on Climate Change (IPCC) highlights the response of marine boundary layer (MBL) clouds to warming associated with increasing greenhouse gases as a major contributor to uncertainties in model projections of climate change. Understanding how MBL clouds respond to increasing temperatures is hampered by the relative scarcity of marine surface observations and the difficulty of retrieving accurate parameters remotely from satellites. In this study we combine data from surface observations with that from the International Satellite Cloud Climatology Project (ISCCP), CloudSat and CALIPSO, with a view to investigating the spatial distribution and variations in MBL cloud fraction and cloud liquid water path (LWP). These results are then compared with the treatment of MBL clouds in the UK Met Office HadGEM models. Future work will assess how variations in LWP impact the top of atmosphere radiative energy balance using data from the Geostationary Earth Radiation Budget (GERB), in order to quantify the response of MBL clouds on interannual timescales to a changing climate
Resumo:
The historical credibility of texts from the Bible is often debated when compared with Iron Age archaeological finds (refs. 1, 2 and references therein). Modern scientific methods may, in principle, be used to independently date structures that seem to be mentioned in the biblical text, to evaluate its historical authenticity. In reality, however, this approach is extremely difficult because of poor archaeological preservation, uncertainty in identification, scarcity of datable materials, and restricted scientific access into well-identified worship sites. Because of these problems, no well-identified Biblical structure has been radiometrically dated until now. Here we report radiocarbon and U-Th dating of the Siloam Tunnel(3-10), proving its Iron Age II date; we conclude that the Biblical text presents an accurate historic record of the Siloam Tunnel's construction. Being one of the longest ancient water tunnels lacking intermediate shafts(11,12), dating the Siloam Tunnel is a key to determining where and when this technological breakthrough took place. Siloam Tunnel dating also refutes a claim(13) that the tunnel was constructed in the second century BC.
Resumo:
An experiment was conducted to determine what effect simple treatments might have on the voluntary intake by goats in Nepal of Eupatorium adenophorum, an invasive weed that is usually only consumed by goats to a very limited extent. Samples of E. adenophorum were collected and either untreated, soaked for 2 h or wilted for 2 h before being oven dried (60 degrees C) and ground. Soaking and wilting had little effect on the chemical composition of E. adenophorum, but did increase (P=0.036) its in vitro organic matter degradability, by approximately 8%. The short-term intake rate (STIR) of treated and untreated E. adenophorum was then estimated with eight goats. Soaking time (from 2 to 24 h) was not related to STIR (r = -0.111, P=0.198), but the time E. adenophorum was left to wilt (from 2 to 48h), was positively related to STIR (r=0.521, P<0.001), with values of STIR (g dry matter/min kg goat liveweight(0.75)) being 0.405, 0.649,1.058, S.E.M. 0.088 for E. adenophorum, that had been wilted for 0, 24 and 48 h respectively (P<0.001). Liveweight change of goats and voluntary intake of E. adenophorum by goats was then estimated with 24 goats. E. adenophorum was fed either unwilted, or wilted for 24 or 48 h. It was fed as the sole forage or as a 3:1 mixture (dry matter basis) with Ficus cunia. There was a linear (P<0.001) and quadratic (P<0.01) increase in the intake of total forage and E. adenophorum with wilting time of E. adenophorum. Offering Ficus cunia increased total forage intake, but decreased E. adenophorum intake (P<0.05). After four weeks, there was virtually no change in goat liveweight and no significant difference between treatments. The results suggest that wilting E adenophorum for 24 h could increase its intake by goats, and thereby increase its usefulness, as a potential source of forage in the dry season of Nepal, when forage scarcity is a common constraint to livestock production. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
A perennial issue for land use policy is the evaluation of landscape biodiversity and the associated cost effectiveness of any biodiversity conservation policy actions. Based on the CUA methodology as applied to species conservation, this paper develops a methodology for evaluating the impact on habitats of alternative landscape management scenarios. The method incorporates three dimensions of habitats, quantity change, quality change and relative scarcity, and is illustrated in relation to the alternative landscape management scenarios for the Scottish Highlands (Cairngorms) study area of the BioScene project. The results demonstrate the value of the method for evaluating biodiversity conservation policies through their impact on habitats.
Resumo:
In the 1990s the Message Passing Interface Forum defined MPI bindings for Fortran, C, and C++. With the success of MPI these relatively conservative languages have continued to dominate in the parallel computing community. There are compelling arguments in favour of more modern languages like Java. These include portability, better runtime error checking, modularity, and multi-threading. But these arguments have not converted many HPC programmers, perhaps due to the scarcity of full-scale scientific Java codes, and the lack of evidence for performance competitive with C or Fortran. This paper tries to redress this situation by porting two scientific applications to Java. Both of these applications are parallelized using our thread-safe Java messaging system—MPJ Express. The first application is the Gadget-2 code, which is a massively parallel structure formation code for cosmological simulations. The second application uses the finite-domain time-difference method for simulations in the area of computational electromagnetics. We evaluate and compare the performance of the Java and C versions of these two scientific applications, and demonstrate that the Java codes can achieve performance comparable with legacy applications written in conventional HPC languages. Copyright © 2009 John Wiley & Sons, Ltd.
Resumo:
The scarcity and stochastic nature of genetic mutations presents a significant challenge for scientists seeking to characterise de novo mutation frequency at specific loci. Such mutations can be particularly numerous during regeneration of plants from in vitro culture and can undermine the value of germplasm conservation efforts. We used cleaved amplified polymorphic sequence (CAPS) analysis to characterise new mutations amongst a clonal population of cocoa plants regenerated via a somatic embryogenesis protocol used previously for cocoa cryopreservation. Efficacy of the CAPS system for mutation detection was greatly improved after an ‘a priori’ in silico screen of reference target sequences for actual and potential restriction enzyme recognition sites using a new freely available software called Artbio. Artbio surveys known sequences for existing restriction enzyme recognition sites but also identifies all single nucleotide polymorphism (SNP) deviations from such motifs. Using this software, we performed an in silico screen of seven loci for restriction sites and their potential mutant SNP variants that were possible from 21 restriction enzymes. The four most informative locus-enzyme combinations were then used to survey the regenerant populations for de novo mutants. We characterised the pattern of point mutations and, using the outputs of Artbio, calculated the ratio of base substitution in 114 somatic embryo-derived cocoa regenerants originating from two explant genotypes. We found 49 polymorphisms, comprising 26.3% of the samples screened, with an inferred rate of 2.8 × 10−3 substitutions/screened base. This elevated rate is of a similar order of magnitude to previous reports of de novo microsatellite length mutations arising in the crop and suggests caution should be exercised when applying somatic embryogenesis for the conservation of plant germplasm.