110 resultados para scale change
Resumo:
During the descent into the recent ‘exceptionally’ low solar minimum, observations have revealed a larger change in solar UV emissions than seen at the same phase of previous solar cycles. This is particularly true at wavelengths responsible for stratospheric ozone production and heating. This implies that ‘top-down’ solar modulation could be a larger factor in long-term tropospheric change than previously believed, many climate models allowing only for the ‘bottom-up’ effect of the less-variable visible and infrared solar emissions. We present evidence for long-term drift in solar UV irradiance, which is not found in its commonly used proxies. In addition, we find that both stratospheric and tropospheric winds and temperatures show stronger regional variations with those solar indices that do show long-term trends. A top-down climate effect that shows long-term drift (and may also be out of phase with the bottom-up solar forcing) would change the spatial response patterns and would mean that climate-chemistry models that have sufficient resolution in the stratosphere would become very important for making accurate regional/seasonal climate predictions. Our results also provide a potential explanation of persistent palaeoclimate results showing solar influence on regional or local climate indicators.
Resumo:
Models of snow processes in areas of possible large-scale change need to be site independent and physically based. Here, the accumulation and ablation of the seasonal snow cover beneath a fir canopy has been simulated with a new physically based snow-soil vegetation-atmosphere transfer scheme (Snow-SVAT) called SNOWCAN. The model was formulated by coupling a canopy optical and thermal radiation model to a physically based multilayer snow model. Simple representations of other forest effects were included. These include the reduction of wind speed and hence turbulent transfer beneath the canopy, sublimation of intercepted snow, and deposition of debris on the surface. This paper tests this new modeling approach fully at a fir site within Reynolds Creek Experimental Watershed, Idaho. Model parameters were determined at an open site and subsequently applied to the fir site. SNOWCAN was evaluated using measurements of snow depth, subcanopy solar and thermal radiation, and snowpack profiles of temperature, density, and grain size. Simulations showed good agreement with observations (e.g., fir site snow depth was estimated over the season with r(2) = 0.96), generally to within measurement error. However, the simulated temperature profiles were less accurate after a melt-freeze event, when the temperature discrepancy resulted from underestimation of the rate of liquid water flow and/or the rate of refreeze. This indicates both that the general modeling approach is applicable and that a still more complete representation of liquid water in the snowpack will be important.
Resumo:
There is a growing consensus that the eleven year modulation of galactic cosmic rays (GCRs) resulting from solar activity is related to interplanetary propagating diffusive barriers (PDBs). The source of these PDBs is not well understood and numerical models describing GCR modulation simulate their effect by scaling the diffusion tensor to the interplanetary magnetic field strength (IMF). The implications of a century-scale change in solar wind speed and open solar flux, for numerical modelling of GCR modulation and the reconstruction of GCR variations over the last hundred years are discussed. The dominant role of the solar non-axisymmetric magnetic field in both forcing longitudinal solar wind speed fluctuations at solar maximum and in increasing the IMF is discussed in the context of a long-term rise in the open solar magnetic flux.
Resumo:
Natural resource-dependent societies in developing countries are facing increased pressures linked to global climate change. While social-ecological systems evolve to accommodate variability, there is growing evidence that changes in drought, storm and flood extremes are increasing exposure of currently vulnerable populations. In many countries in Africa, these pressures are compounded by disruption to institutions and variability in livelihoods and income. The interactions of both rapid and slow onset livelihood disturbance contribute to enduring poverty and slow processes of rural livelihood renewal across a complex landscape. We explore cross-scale dynamics in coping and adaptation response, drawing on qualitative data from a case study in Mozambique. The research characterises the engagements across multiple institutional scales and the types of agents involved, providing insight into emergent conditions for adaptation to climate change in rural economies, The analysis explores local responses to climate shocks, food security and poverty reduction, through informal institutions, forms of livelihood diversification and collective land-use systems that allow reciprocity, flexibility and the ability to buffer shocks. However, the analysis shows that agricultural initiatives have helped to facilitate effective livelihood renewal, through the reorganisation of social institutions and opportunities for communication, innovation and micro-credit. Although there are challenges to mainstreaming adaptation at different scales, this research shows why it is critical to assess how policies can protect conditions for emergence of livelihood transformation. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Evidence is presented of widespread changes in structure and species composition between the 1980s and 2003–2004 from surveys of 249 British broadleaved woodlands. Structural components examined include canopy cover, vertical vegetation profiles, field-layer cover and deadwood abundance. Woods were located in 13 geographical localities and the patterns of change were examined for each locality as well as across all woods. Changes were not uniform throughout the localities; overall, there were significant decreases in canopy cover and increases in sub-canopy (2–10 m) cover. Changes in 0.5–2 m vegetation cover showed strong geographic patterns, increasing in western localities, but declining or showing no change in eastern localities. There were significant increases in canopy ash Fraxinus excelsior and decreases in oak Quercus robur/petraea. Shrub layer ash and honeysuckle Lonicera periclymenum increased while birch Betula spp. hawthorn Crataegus monogyna and hazel Corylus avellana declined. Within the field layer, both bracken Pteridium aquilinum and herbs increased. Overall, deadwood generally increased. Changes were consistent with reductions in active woodland management and changes in grazing and browsing pressure. These findings have important implications for sustainable active management of British broadleaved woodlands to meet silvicultural and biodiversity objectives.
Resumo:
This paper presents a preface to this Special Issue on the results of the QUEST-GSI (Global Scale Impacts) project on climate change impacts on catchment-scale water resources. A detailed description of the unified methodology, subsequently used in all studies in this issue, is provided. The project method involved running simulations of catchment-scale hydrology using a unified set of past and future climate scenarios, to enable a consistent analysis of the climate impacts around the globe. These scenarios include "policy-relevant" prescribed warming scenarios. This is followed by a synthesis of the key findings. Overall, the studies indicate that in most basins the models project substantial changes to river flow, beyond that observed in the historical record, but that in many cases there is considerable uncertainty in the magnitude and sign of the projected changes. The implications of this for adaptation activities are discussed.
Resumo:
We present a comparative analysis of projected impacts of climate change on river runoff from two types of distributed hydrological model, a global hydrological model (GHM) and catchment-scale hydrological models (CHM). Analyses are conducted for six catchments that are global in coverage and feature strong contrasts in spatial scale as well as climatic and development conditions. These include the Liard (Canada), Mekong (SE Asia), Okavango (SW Africa), Rio Grande (Brazil), Xiangu (China) and Harper's Brook (UK). A single GHM (Mac-PDM.09) is applied to all catchments whilst different CHMs are applied for each catchment. The CHMs typically simulate water resources impacts based on a more explicit representation of catchment water resources than that available from the GHM, and the CHMs include river routing. Simulations of average annual runoff, mean monthly runoff and high (Q5) and low (Q95) monthly runoff under baseline (1961-1990) and climate change scenarios are presented. We compare the simulated runoff response of each hydrological model to (1) prescribed increases in global mean temperature from the HadCM3 climate model and (2)a prescribed increase in global-mean temperature of 2oC for seven GCMs to explore response to climate model and structural uncertainty. We find that differences in projected changes of mean annual runoff between the two types of hydrological model can be substantial for a given GCM, and they are generally larger for indicators of high and low flow. However, they are relatively small in comparison to the range of projections across the seven GCMs. Hence, for the six catchments and seven GCMs we considered, climate model structural uncertainty is greater than the uncertainty associated with the type of hydrological model applied. Moreover, shifts in the seasonal cycle of runoff with climate change are presented similarly by both hydrological models, although for some catchments the monthly timing of high and low flows differs.This implies that for studies that seek to quantify and assess the role of climate model uncertainty on catchment-scale runoff, it may be equally as feasible to apply a GHM as it is to apply a CHM, especially when climate modelling uncertainty across the range of available GCMs is as large as it currently is. Whilst the GHM is able to represent the broad climate change signal that is represented by the CHMs, we find, however, that for some catchments there are differences between GHMs and CHMs in mean annual runoff due to differences in potential evaporation estimation methods, in the representation of the seasonality of runoff, and in the magnitude of changes in extreme monthly runoff, all of which have implications for future water management issues.
Resumo:
Climate-G is a large scale distributed testbed devoted to climate change research. It is an unfunded effort started in 2008 and involving a wide community both in Europe and US. The testbed is an interdisciplinary effort involving partners from several institutions and joining expertise in the field of climate change and computational science. Its main goal is to allow scientists carrying out geographical and cross-institutional data discovery, access, analysis, visualization and sharing of climate data. It represents an attempt to address, in a real environment, challenging data and metadata management issues. This paper presents a complete overview about the Climate-G testbed highlighting the most important results that have been achieved since the beginning of this project.
Resumo:
Many studies warn that climate change may undermine global food security. Much work on this topic focuses on modelling crop-weather interactions but these models do not generally account for the ways in which socio-economic factors influence how harvests are affected by weather. To address this gap, this paper uses a quantitative harvest vulnerability index based on annual soil moisture and grain production data as the dependent variables in a Linear Mixed Effects model with national scale socio-economic data as independent variables for the period 1990-2005. Results show that rice, wheat and maize production in middle income countries were especially vulnerable to droughts. By contrast, harvests in countries with higher investments in agriculture (e.g higher amounts of fertilizer use) were less vulnerable to drought. In terms of differences between the world's major grain crops, factors that made rice and wheat crops vulnerable to drought were quite consistent, whilst those of maize crops varied considerably depending on the type of region. This is likely due to the fact that maize is produced under very different conditions worldwide. One recommendation for reducing drought vulnerability risks is coordinated development and adaptation policies, including institutional support that enables farmers to take proactive action.
Resumo:
Crop production is inherently sensitive to fluctuations in weather and climate and is expected to be impacted by climate change. To understand how this impact may vary across the globe many studies have been conducted to determine the change in yield of several crops to expected changes in climate. Changes in climate are typically derived from a single to no more than a few General Circulation Models (GCMs). This study examines the uncertainty introduced to a crop impact assessment when 14 GCMs are used to determine future climate. The General Large Area Model for annual crops (GLAM) was applied over a global domain to simulate the productivity of soybean and spring wheat under baseline climate conditions and under climate conditions consistent with the 2050s under the A1B SRES emissions scenario as simulated by 14 GCMs. Baseline yield simulations were evaluated against global country-level yield statistics to determine the model's ability to capture observed variability in production. The impact of climate change varied between crops, regions, and by GCM. The spread in yield projections due to GCM varied between no change and a reduction of 50%. Without adaptation yield response was linearly related to the magnitude of local temperature change. Therefore, impacts were greatest for countries at northernmost latitudes where warming is predicted to be greatest. However, these countries also exhibited the greatest potential for adaptation to offset yield losses by shifting the crop growing season to a cooler part of the year and/or switching crop variety to take advantage of an extended growing season. The relative magnitude of impacts as simulated by each GCM was not consistent across countries and between crops. It is important, therefore, for crop impact assessments to fully account for GCM uncertainty in estimating future climates and to be explicit about assumptions regarding adaptation.
Resumo:
The time evolution of the circulation change at the end of the Baiu season is investigated using ERA40 data. An end-day is defined for each of the 23 years based on the 850 hPa θe value at 40˚Nin the 130-140˚E sector exceeding 330 K. Daily time series of variables are composited with respect to this day. These composite time-series exhibit a clearer and more rapid change in the precipitation and the large-scale circulation over the whole East Asia region than those performed using calendar days. The precipitation change includes the abrupt end of the Baiu rain, the northward shift of tropical convection perhaps starting a few days before this, and the start of the heavier rain at higher latitudes. The northward migration of lower tropospheric warm, moist tropical air, a general feature of the seasonal march in the region, is fast over the continent and slow over the ocean. By mid to late July the cooler air over the Sea of Japan is surrounded on 3 sides by the tropical air. It is suggestive that the large-scale stage has been set for a jump to the post-Baiu state, i.e., for the end of the Baiu season. Two likely triggers for the actual change emerge from the analysis. The first is the northward movement of tropical convection into the Philippine region. The second is an equivalent barotropic Rossby wave-train, that over a 10-day period develops downstream across Eurasia. It appears likely that in most years one or both mechanisms can be important in triggering the actual end of the Baiu season.
Resumo:
The development of effective environmental management plans and policies requires a sound understanding of the driving forces involved in shaping and altering the structure and function of ecosystems. However, driving forces, especially anthropogenic ones, are defined and operate at multiple administrative levels, which do not always match ecological scales. This paper presents an innovative methodology of analysing drivers of change by developing a typology of scale sensitivity of drivers that classifies and describes the way they operate across multiple administrative levels. Scale sensitivity varies considerably among drivers, which can be classified into five broad categories depending on the response of ‘evenness’ and ‘intensity change’ when moving across administrative levels. Indirect drivers tend to show low scale sensitivity, whereas direct drivers show high scale sensitivity, as they operate in a non-linear way across the administrative scale. Thus policies addressing direct drivers of change, in particular, need to take scale into consideration during their formulation. Moreover, such policies must have a strong spatial focus, which can be achieved either by encouraging local–regional policy making or by introducing high flexibility in (inter)national policies to accommodate increased differentiation at lower administrative levels. High quality data is available for several drivers, however, the availability of consistent data at all levels for non-anthropogenic drivers is a major constraint to mapping and assessing their scale sensitivity. This lack of data may hinder effective policy making for environmental management, since it restricts the ability to fully account for scale sensitivity of natural drivers in policy design.