40 resultados para satellite-relayed data loggers
Resumo:
The performance of flood inundation models is often assessed using satellite observed data; however these data have inherent uncertainty. In this study we assess the impact of this uncertainty when calibrating a flood inundation model (LISFLOOD-FP) for a flood event in December 2006 on the River Dee, North Wales, UK. The flood extent is delineated from an ERS-2 SAR image of the event using an active contour model (snake), and water levels at the flood margin calculated through intersection of the shoreline vector with LiDAR topographic data. Gauged water levels are used to create a reference water surface slope for comparison with the satellite-derived water levels. Residuals between the satellite observed data points and those from the reference line are spatially clustered into groups of similar values. We show that model calibration achieved using pattern matching of observed and predicted flood extent is negatively influenced by this spatial dependency in the data. By contrast, model calibration using water elevations produces realistic calibrated optimum friction parameters even when spatial dependency is present. To test the impact of removing spatial dependency a new method of evaluating flood inundation model performance is developed by using multiple random subsamples of the water surface elevation data points. By testing for spatial dependency using Moran’s I, multiple subsamples of water elevations that have no significant spatial dependency are selected. The model is then calibrated against these data and the results averaged. This gives a near identical result to calibration using spatially dependent data, but has the advantage of being a statistically robust assessment of model performance in which we can have more confidence. Moreover, by using the variations found in the subsamples of the observed data it is possible to assess the effects of observational uncertainty on the assessment of flooding risk.
Resumo:
During the past 15 years, a number of initiatives have been undertaken at national level to develop ocean forecasting systems operating at regional and/or global scales. The co-ordination between these efforts has been organized internationally through the Global Ocean Data Assimilation Experiment (GODAE). The French MERCATOR project is one of the leading participants in GODAE. The MERCATOR systems routinely assimilate a variety of observations such as multi-satellite altimeter data, sea-surface temperature and in situ temperature and salinity profiles, focusing on high-resolution scales of the ocean dynamics. The assimilation strategy in MERCATOR is based on a hierarchy of methods of increasing sophistication including optimal interpolation, Kalman filtering and variational methods, which are progressively deployed through the Syst`eme d’Assimilation MERCATOR (SAM) series. SAM-1 is based on a reduced-order optimal interpolation which can be operated using ‘altimetry-only’ or ‘multi-data’ set-ups; it relies on the concept of separability, assuming that the correlations can be separated into a product of horizontal and vertical contributions. The second release, SAM-2, is being developed to include new features from the singular evolutive extended Kalman (SEEK) filter, such as three-dimensional, multivariate error modes and adaptivity schemes. The third one, SAM-3, considers variational methods such as the incremental four-dimensional variational algorithm. Most operational forecasting systems evaluated during GODAE are based on least-squares statistical estimation assuming Gaussian errors. In the framework of the EU MERSEA (Marine EnviRonment and Security for the European Area) project, research is being conducted to prepare the next-generation operational ocean monitoring and forecasting systems. The research effort will explore nonlinear assimilation formulations to overcome limitations of the current systems. This paper provides an overview of the developments conducted in MERSEA with the SEEK filter, the Ensemble Kalman filter and the sequential importance re-sampling filter.
Resumo:
The collection of wind speed time series by means of digital data loggers occurs in many domains, including civil engineering, environmental sciences and wind turbine technology. Since averaging intervals are often significantly larger than typical system time scales, the information lost has to be recovered in order to reconstruct the true dynamics of the system. In the present work we present a simple algorithm capable of generating a real-time wind speed time series from data logger records containing the average, maximum, and minimum values of the wind speed in a fixed interval, as well as the standard deviation. The signal is generated from a generalized random Fourier series. The spectrum can be matched to any desired theoretical or measured frequency distribution. Extreme values are specified through a postprocessing step based on the concept of constrained simulation. Applications of the algorithm to 10-min wind speed records logged at a test site at 60 m height above the ground show that the recorded 10-min values can be reproduced by the simulated time series to a high degree of accuracy.
Resumo:
The increased availability of digital elevation models and satellite image data enable testing of morphometric relationships between sand dune variables (dune height, spacing and equivalent sand thickness), which were originally established using limited field survey data. These long-established geomorphological hypotheses can now be tested against very much larger samples than were possible when available data were limited to what could be collected by field surveys alone. This project uses ASTER Global Digital Elevation Model (GDEM) data to compare morphometric relationships between sand dune variables in the southwest Kalahari dunefield to those of the Namib Sand Sea, to test whether the relationships found in an active sand sea (Namib) also hold for the fixed dune system of the nearby southwest Kalahari. The data show significant morphometric differences between the simple linear dunes of the Namib sand sea and the southwest Kalahari; the latter do not show the expected positive relationship between dune height and spacing. The southwest Kalahari dunes show a similar range of dune spacings, but they are less tall, on average, than the Namib sand sea dunes. There is a clear spatial pattern to these morphometric data; the tallest and most closely spaced dunes are towards the southeast of the Kalahari dunefield; and this is where the highest values of equivalent sand thickness result. We consider the possible reasons for the observed differences and highlight the need for more studies comparing sand seas and dunefields from different environmental settings.
Resumo:
The reliability of the global reanalyses in the polar regions is investigated. The overview stems from an April 2006 Scientific Committee on Antarctic Research (SCAR) workshop on the performance of global reanalyses in high latitudes held at the British Antarctic Survey. Overall, the skill is much higher in the Arctic than the Antarctic, where the reanalyses are only reliable in the summer months prior to the modern satellite era. In the Antarctic, large circulation differences between the reanalyses are found primarily before 1979, when vast quantities of satellite sounding data started to be assimilated. Specifically for ERA-40, this data discontinuity creates a marked jump in Antarctic snow accumulation, especially at high elevations. In the Arctic, the largest differences are related to the reanalyses depiction of clouds and their associated radiation impacts; ERA-40 captures the cloud variability much better than NCEP1 and JRA-25, but the ERA-40 and JRA-25 clouds are too optically thin for shortwave radiation. To further contrast the reanalyses skill, cyclone tracking results are presented. In the Southern Hemisphere, cyclonic activity is markedly different between the reanalyses, where there are few matched cyclones prior to 1979. In comparison, only some of the weaker cyclones are not matched in the Northern Hemisphere from 1958-2001, again indicating the superior skill in this hemisphere. Although this manuscript focuses on deficiencies in the reanalyses, it is important to note that they are a powerful tool for climate studies in both polar regions when used with a recognition of their limitations.
Resumo:
The study of the morphology of tidal networks and their relation to salt marsh vegetation is currently an active area of research, and a number of theories have been developed which require validation using extensive observations. Conventional methods of measuring networks and associated vegetation can be cumbersome and subjective. Recent advances in remote sensing techniques mean that these can now often reduce measurement effort whilst at the same time increasing measurement scale. The status of remote sensing of tidal networks and their relation to vegetation is reviewed. The measurement of network planforms and their associated variables is possible to sufficient resolution using digital aerial photography and airborne scanning laser altimetry (LiDAR), with LiDAR also being able to measure channel depths. A multi-level knowledge-based technique is described to extract networks from LiDAR in a semi-automated fashion. This allows objective and detailed geomorphological information on networks to be obtained over large areas of the inter-tidal zone. It is illustrated using LIDAR data of the River Ems, Germany, the Venice lagoon, and Carnforth Marsh, Morecambe Bay, UK. Examples of geomorphological variables of networks extracted from LiDAR data are given. Associated marsh vegetation can be classified into its component species using airborne hyperspectral and satellite multispectral data. Other potential applications of remote sensing for network studies include determining spatial relationships between networks and vegetation, measuring marsh platform vegetation roughness, in-channel velocities and sediment processes, studying salt pans, and for marsh restoration schemes.
Resumo:
Broadband shortwave and longwave radiative fluxes observed both at the surface and from space during the Radiative Atmospheric Divergence using ARM Mobile Facility, GERB data and AMMA Stations (RADAGAST) experiment in Niamey, Niger, in 2006 are presented. The surface fluxes were measured by the Atmospheric Radiation Measurement (ARM) Program Mobile Facility (AMF) at Niamey airport, while the fluxes at the top of the atmosphere (TOA) are from the Geostationary Earth Radiation Budget (GERB) instrument on the Meteosat-8 satellite. The data are analyzed as daily averages, in order to minimize sampling differences between the surface and top of atmosphere instruments, while retaining the synoptic and seasonal changes that are the main focus of this study. A cloud mask is used to identify days with cloud versus those with predominantly clear skies. The influence of temperature, water vapor, aerosols, and clouds is investigated. Aerosols are ubiquitous throughout the year and have a significant impact on both the shortwave and longwave fluxes. The large and systematic seasonal changes in temperature and column integrated water vapor (CWV) through the dry and wet seasons are found to exert strong influences on the longwave fluxes. These influences are often in opposition to each other, because the highest temperatures occur at the end of the dry season when the CWV is lowest, while in the wet season the lowest temperatures are associated with the highest values of CWV. Apart from aerosols, the shortwave fluxes are also affected by clouds and by the seasonal changes in CWV. The fluxes are combined to provide estimates of the divergence of radiation across the atmosphere throughout 2006. The longwave divergence shows a relatively small variation through the year, because of a partial compensation between the seasonal variations in the outgoing longwave radiation (OLR) and surface net longwave radiation. A simple model of the greenhouse effect is used to interpret this result in terms of the dependence of the normalized greenhouse effect at the TOA and of the effective emissivity of the atmosphere at the surface on the CWV. It is shown that, as the CWV increases, the atmosphere loses longwave energy to the surface with about the same increasing efficiency with which it traps the OLR. When combined with the changes in temperature, this maintains the atmospheric longwave divergence within the narrow range that is observed. The shortwave divergence is mainly determined by the CWV and aerosol loadings and the effect of clouds is much smaller than on the component fluxes.
Resumo:
Satellite observed data for flood events have been used to calibrate and validate flood inundation models, providing valuable information on the spatial extent of the flood. Improvements in the resolution of this satellite imagery have enabled indirect remote sensing of water levels by using an underlying LiDAR DEM to extract the water surface elevation at the flood margin. Further to comparison of the spatial extent, this now allows for direct comparison between modelled and observed water surface elevations. Using a 12.5m ERS-1 image of a flood event in 2006 on the River Dee, North Wales, UK, both of these data types are extracted and each assessed for their value in the calibration of flood inundation models. A LiDAR guided snake algorithm is used to extract an outline of the flood from the satellite image. From the extracted outline a binary grid of wet / dry cells is created at the same resolution as the model, using this the spatial extent of the modelled and observed flood can be compared using a measure of fit between the two binary patterns of flooding. Water heights are extracted using points at intervals of approximately 100m along the extracted outline, and the students T-test is used to compare modelled and observed water surface elevations. A LISFLOOD-FP model of the catchment is set up using LiDAR topographic data resampled to the 12.5m resolution of the satellite image, and calibration of the friction parameter in the model is undertaken using each of the two approaches. Comparison between the two approaches highlights the sensitivity of the spatial measure of fit to uncertainty in the observed data and the potential drawbacks of using the spatial extent when parts of the flood are contained by the topography.
Resumo:
Facilities managers have a host of skills to sustain the functionality of complex buildings, often not provided by them directly, but by the team of specialists they draw upon to effectively plan for the future, whether the resource be money, space or technology. Building intelligence presents a challenge in terms of understanding a wholly new approach to the building management. This paper asks if the intelligent building of today meets the needs of the facilities management team. Does it enable them to manage their asset more effectively? New technologies are converging that will enable a radically new approach to maintenance, enabling remote smart sensing or remote condition based monitoring (CBM). Some of the design and economic issues that arise from this radically new approach to managing built assets are highlighted and the possibilities for a maintenance environment, where wires, power cables and data loggers become a thing of the past, is described.
Resumo:
We review the procedures and challenges that must be considered when using geoid data derived from the Gravity and steady-state Ocean Circulation Explorer (GOCE) mission in order to constrain the circulation and water mass representation in an ocean 5 general circulation model. It covers the combination of the geoid information with timemean sea level information derived from satellite altimeter data, to construct a mean dynamic topography (MDT), and considers how this complements the time-varying sea level anomaly, also available from the satellite altimeter. We particularly consider the compatibility of these different fields in their spatial scale content, their temporal rep10 resentation, and in their error covariances. These considerations are very important when the resulting data are to be used to estimate ocean circulation and its corresponding errors. We describe the further steps needed for assimilating the resulting dynamic topography information into an ocean circulation model using three different operational fore15 casting and data assimilation systems. We look at methods used for assimilating altimeter anomaly data in the absence of a suitable geoid, and then discuss different approaches which have been tried for assimilating the additional geoid information. We review the problems that have been encountered and the lessons learned in order the help future users. Finally we present some results from the use of GRACE geoid in20 formation in the operational oceanography community and discuss the future potential gains that may be obtained from a new GOCE geoid.
Resumo:
This note describes a simple procedure for removing unphysical temporal discontinuities in ERA-Interim upper stratospheric global mean temperatures in March 1985 and August 1998 that have arisen due to changes in satellite radiance data used in the assimilation. The derived temperature adjustments (offsets) are suitable for use in stratosphere-resolving chemistry-climate models that are nudged (relaxed) to ERA-Interim winds and temperatures. Simulations using a nudged version of the Canadian Middle Atmosphere Model (CMAM) show that the inclusion of the temperature adjustments produces temperature time series that are devoid of the large jumps in 1985 and 1998. Due to its strong temperature dependence, the simulated upper stratospheric ozone is also shown to vary smoothly in time, unlike in a nudged simulation without the adjustments where abrupt changes in ozone occur at the times of the temperature jumps. While the adjustments to the ERA-Interim temperatures remove significant artefacts in the nudged CMAM simulation, spurious transient effects that arise due to water vapour and persist for about 5 yr after the 1979 switch to ERA-Interim data are identified, underlining the need for caution when analysing trends in runs nudged to reanalyses.
Resumo:
This paper presents a summary of the work done within the European Union's Seventh Framework Programme project ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants). ECLIPSE had a unique systematic concept for designing a realistic and effective mitigation scenario for short-lived climate pollutants (SLCPs; methane, aerosols and ozone, and their precursor species) and quantifying its climate and air quality impacts, and this paper presents the results in the context of this overarching strategy. The first step in ECLIPSE was to create a new emission inventory based on current legislation (CLE) for the recent past and until 2050. Substantial progress compared to previous work was made by including previously unaccounted types of sources such as flaring of gas associated with oil production, and wick lamps. These emission data were used for present-day reference simulations with four advanced Earth system models (ESMs) and six chemistry transport models (CTMs). The model simulations were compared with a variety of ground-based and satellite observational data sets from Asia, Europe and the Arctic. It was found that the models still underestimate the measured seasonality of aerosols in the Arctic but to a lesser extent than in previous studies. Problems likely related to the emissions were identified for northern Russia and India, in particular. To estimate the climate impacts of SLCPs, ECLIPSE followed two paths of research: the first path calculated radiative forcing (RF) values for a large matrix of SLCP species emissions, for different seasons and regions independently. Based on these RF calculations, the Global Temperature change Potential metric for a time horizon of 20 years (GTP20) was calculated for each SLCP emission type. This climate metric was then used in an integrated assessment model to identify all emission mitigation measures with a beneficial air quality and short-term (20-year) climate impact. These measures together defined a SLCP mitigation (MIT) scenario. Compared to CLE, the MIT scenario would reduce global methane (CH4) and black carbon (BC) emissions by about 50 and 80 %, respectively. For CH4, measures on shale gas production, waste management and coal mines were most important. For non-CH4 SLCPs, elimination of high-emitting vehicles and wick lamps, as well as reducing emissions from gas flaring, coal and biomass stoves, agricultural waste, solvents and diesel engines were most important. These measures lead to large reductions in calculated surface concentrations of ozone and particulate matter. We estimate that in the EU, the loss of statistical life expectancy due to air pollution was 7.5 months in 2010, which will be reduced to 5.2 months by 2030 in the CLE scenario. The MIT scenario would reduce this value by another 0.9 to 4.3 months. Substantially larger reductions due to the mitigation are found for China (1.8 months) and India (11–12 months). The climate metrics cannot fully quantify the climate response. Therefore, a second research path was taken. Transient climate ensemble simulations with the four ESMs were run for the CLE and MIT scenarios, to determine the climate impacts of the mitigation. In these simulations, the CLE scenario resulted in a surface temperature increase of 0.70 ± 0.14 K between the years 2006 and 2050. For the decade 2041–2050, the warming was reduced by 0.22 ± 0.07 K in the MIT scenario, and this result was in almost exact agreement with the response calculated based on the emission metrics (reduced warming of 0.22 ± 0.09 K). The metrics calculations suggest that non-CH4 SLCPs contribute ~ 22 % to this response and CH4 78 %. This could not be fully confirmed by the transient simulations, which attributed about 90 % of the temperature response to CH4 reductions. Attribution of the observed temperature response to non-CH4 SLCP emission reductions and BC specifically is hampered in the transient simulations by small forcing and co-emitted species of the emission basket chosen. Nevertheless, an important conclusion is that our mitigation basket as a whole would lead to clear benefits for both air quality and climate. The climate response from BC reductions in our study is smaller than reported previously, possibly because our study is one of the first to use fully coupled climate models, where unforced variability and sea ice responses cause relatively strong temperature fluctuations that may counteract (and, thus, mask) the impacts of small emission reductions. The temperature responses to the mitigation were generally stronger over the continents than over the oceans, and with a warming reduction of 0.44 K (0.39–0.49) K the largest over the Arctic. Our calculations suggest particularly beneficial climate responses in southern Europe, where surface warming was reduced by about 0.3 K and precipitation rates were increased by about 15 (6–21) mm yr−1 (more than 4 % of total precipitation) from spring to autumn. Thus, the mitigation could help to alleviate expected future drought and water shortages in the Mediterranean area. We also report other important results of the ECLIPSE project.
Resumo:
In the event of a volcanic eruption the decision to close airspace is based on forecast ash maps, produced using volcanic ash transport and dispersion models. In this paper we quantitatively evaluate the spatial skill of volcanic ash simulations using satellite retrievals of ash from the Eyja allajökull eruption during the period from 7 to 16 May 2010. We find that at the start of this period, 7–10 May, the model (FLEXible PARTicle) has excellent skill and can predict the spatial distribution of the satellite-retrieved ash to within 0.5∘ × 0.5∘ latitude/longitude. However, on 10 May there is a decrease in the spatial accuracy of the model to 2.5∘× 2.5∘ latitude/longitude, and between 11 and 12 May the simulated ash location errors grow rapidly. On 11 May ash is located close to a bifurcation point in the atmosphere, resulting in a rapid divergence in the modeled and satellite ash locations. In general, the model skill reduces as the residence time of ash increases. However, the error growth is not always steady. Rapid increases in error growth are linked to key points in the ash trajectories. Ensemble modeling using perturbed meteorological data would help to represent this uncertainty, and assimilation of satellite ash data would help to reduce uncertainty in volcanic ash forecasts.
Resumo:
The Southern Ocean is a critical region for global climate, yet large cloud and solar radiation biases over the Southern Ocean are a long-standing problem in climate models and are poorly understood, leading to biases in simulated sea surface temperatures. This study shows that supercooled liquid clouds are central to understanding and simulating the Southern Ocean environment. A combination of satellite observational data and detailed radiative transfer calculations is used to quantify the impact of cloud phase and cloud vertical structure on the reflected solar radiation in the Southern Hemisphere summer. It is found that clouds with supercooled liquid tops dominate the population of liquid clouds. The observations show that clouds with supercooled liquid tops contribute between 27% and 38% to the total reflected solar radiation between 40° and 70°S, and climate models are found to poorly simulate these clouds. The results quantify the importance of supercooled liquid clouds in the Southern Ocean environment and highlight the need to improve understanding of the physical processes that control these clouds in order to improve their simulation in numerical models. This is not only important for improving the simulation of present-day climate and climate variability, but also relevant for increasing confidence in climate feedback processes and future climate projections.
Resumo:
A combination of satellite data, reanalysis products and climate models are combined to monitor changes in water vapour, clear-sky radiative cooling of the atmosphere and precipitation over the period 1979-2006. Climate models are able to simulate observed increases in column integrated water vapour (CWV) with surface temperature (Ts) over the ocean. Changes in the observing system lead to spurious variability in water vapour and clear-sky longwave radiation in reanalysis products. Nevertheless all products considered exhibit a robust increase in clear-sky longwave radiative cooling from the atmosphere to the surface; clear-sky longwave radiative cooling of the atmosphere is found to increase with Ts at the rate of ~4 Wm-2 K-1 over tropical ocean regions of mean descending vertical motion. Precipitation (P) is tightly coupled to atmospheric radiative cooling rates and this implies an increase in P with warming at a slower rate than the observed increases in CWV. Since convective precipitation depends on moisture convergence, the above implies enhanced precipitation over convective regions and reduced precipitation over convectively suppressed regimes. To quantify this response, observed and simulated changes in precipitation rate are analysed separately over regions of mean ascending and descending vertical motion over the tropics. The observed response is found to be substantially larger than the model simulations and climate change projections. It is currently not clear whether this is due to deficiencies in model parametrizations or errors in satellite retrievals.