82 resultados para root meander and curling.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Berberine has been shown to have hypoglycaemic activity in several in vitro and in vivo models, although the mechanism of action is not fully known. Berberis lyceum Royle root produces high concentrations of berberine, and in traditional medicine, the whole extract of this plant is used widely to treat diabetes. The antidiabetic activity of the ethanol root extract of Berberis lyceum was compared with pure berberine in normal and alloxan-diabetic rats using similar doses of each. The concentration of berberine in the extract was determined to be 80% dry weight with only trace amounts of other alkaloids present. The purpose of the study was to investigate the effects of berberine and a whole extract of Berberis lyceum on blood glucose and other parameters associated with diabetes, to compare the effects of the crude extract with those of pure berberine and thus validate its use as a therapeutic agent, and finally to identify any contribution of the other components of the extract to these effects. Oral administration of 50 mg/kg of Berberis extract and berberine to normal and experimental diabetic rats produced a significant (p < 0.05) reduction in blood glucose levels from days 3-7 days of treatment. Significant effects were also observed on the glucose tolerance, glycosylated haemoglobin, serum lipid profiles and body weight of experimental animals. Berberis extract and berberine demonstrated similar effects on all parameters measured, and although the extract was comparable in efficacy to berberine, it did not produce any effects additional to those shown by pure berberine. The results support the use of the extract in traditional medicine, and demonstrate that apart from being a highly cost-effective means of treating with berberine, the total extract does not appear to confer any additional benefits or disadvantages compared with the pure compound. Copyright (c) 2008 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fine roots play an important part in forest carbon, nutrient and water cycles. The turnover of fine roots constitutes a major carbon input to soils. Estimation of fine root turnover is difficult, labour intensive and is often compounded by artefacts created by soil disturbance. In this work, an alternative approach of using inclusion nets installed in an undisturbed soil profile was used to measure fine root production and was compared to the in-growth core method. There was no difference between fine root production estimated by the two methods in three southern taiga sites with contrasting soil conditions and tree species composition in the Central Forest State Biosphere Reserve, Russia. Expressed as annual production over standing biomass, Norway spruce fine root turnover was in the region of 0.10 to 0.24 y-1. The inclusion net technique is suitable for field based assessment of fine root production. There are several advantages over the in-growth core method, due to non-disturbance of the soil profile and its potential for very high rate of replication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Predicting how insect crop pests will respond to global climate change is an important part of increasing crop production for future food security, and will increasingly rely on empirically based evidence. The effects of atmospheric composition, especially elevated carbon dioxide (eCO(2)), on insect herbivores have been well studied, but this research has focussed almost exclusively on aboveground insects. However, responses of root-feeding insects to eCO(2) are unlikely to mirror these trends because of fundamental differences between aboveground and belowground habitats. Moreover, changes in secondary metabolites and defensive responses to insect attack under eCO(2) conditions are largely unexplored for root herbivore interactions. This study investigated how eCO(2) (700 mu mol mol-1) affected a root-feeding herbivore via changes to plant growth and concentrations of carbon (C), nitrogen (N) and phenolics. This study used the root-feeding vine weevil, Otiorhynchus sulcatus and the perennial crop, Ribes nigrum. Weevil populations decreased by 33% and body mass decreased by 23% (from 7.2 to 5.4 mg) in eCO(2). Root biomass decreased by 16% in eCO(2), which was strongly correlated with weevil performance. While root N concentrations fell by 8%, there were no significant effects of eCO(2) on root C and N concentrations. Weevils caused a sink in plants, resulting in 8-12% decreases in leaf C concentration following herbivory. There was an interactive effect of CO(2) and root herbivory on root phenolic concentrations, whereby weevils induced an increase at ambient CO(2), suggestive of defensive response, but caused a decrease under eCO(2). Contrary to predictions, there was a positive relationship between root phenolics and weevil performance. We conclude that impaired root-growth underpinned the negative effects of eCO(2) on vine weevils and speculate that the plant's failure to mount a defensive response at eCO(2) may have intensified these negative effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation deals with aspects of sequential data assimilation (in particular ensemble Kalman filtering) and numerical weather forecasting. In the first part, the recently formulated Ensemble Kalman-Bucy (EnKBF) filter is revisited. It is shown that the previously used numerical integration scheme fails when the magnitude of the background error covariance grows beyond that of the observational error covariance in the forecast window. Therefore, we present a suitable integration scheme that handles the stiffening of the differential equations involved and doesn’t represent further computational expense. Moreover, a transform-based alternative to the EnKBF is developed: under this scheme, the operations are performed in the ensemble space instead of in the state space. Advantages of this formulation are explained. For the first time, the EnKBF is implemented in an atmospheric model. The second part of this work deals with ensemble clustering, a phenomenon that arises when performing data assimilation using of deterministic ensemble square root filters in highly nonlinear forecast models. Namely, an M-member ensemble detaches into an outlier and a cluster of M-1 members. Previous works may suggest that this issue represents a failure of EnSRFs; this work dispels that notion. It is shown that ensemble clustering can be reverted also due to nonlinear processes, in particular the alternation between nonlinear expansion and compression of the ensemble for different regions of the attractor. Some EnSRFs that use random rotations have been developed to overcome this issue; these formulations are analyzed and their advantages and disadvantages with respect to common EnSRFs are discussed. The third and last part contains the implementation of the Robert-Asselin-Williams (RAW) filter in an atmospheric model. The RAW filter is an improvement to the widely popular Robert-Asselin filter that successfully suppresses spurious computational waves while avoiding any distortion in the mean value of the function. Using statistical significance tests both at the local and field level, it is shown that the climatology of the SPEEDY model is not modified by the changed time stepping scheme; hence, no retuning of the parameterizations is required. It is found the accuracy of the medium-term forecasts is increased by using the RAW filter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calcitonin receptor-like receptor (CLR) and receptor activity modifying protein 1 (RAMP1) comprise a receptor for calcitonin gene related peptide (CGRP) and intermedin. Although CGRP is widely expressed in the nervous system, less is known about the localization of CLR and RAMP1. To localize these proteins, we raised antibodies to CLR and RAMP1. Antibodies specifically interacted with CLR and RAMP1 in HEK cells coexpressing rat CLR and RAMP1, determined by Western blotting and immunofluorescence. Fluorescent CGRP specifically bound to the surface of these cells and CGRP, CLR, and RAMP1 internalized into the same endosomes. CLR was prominently localized in nerve fibers of the myenteric and submucosal plexuses, muscularis externa and lamina propria of the gastrointestinal tract, and in the dorsal horn of the spinal cord of rats. CLR was detected at low levels in the soma of enteric, dorsal root ganglia (DRG), and spinal neurons. RAMP1 was also localized to enteric and DRG neurons and the dorsal horn. CLR and RAMP1 were detected in perivascular nerves and arterial smooth muscle. Nerve fibers containing CGRP and intermedin were closely associated with CLR fibers in the gastrointestinal tract and dorsal horn, and CGRP and CLR colocalized in DRG neurons. Thus, CLR and RAMP1 may mediate the effects of CGRP and intermedin in the nervous system. However, mRNA encoding RAMP2 and RAMP3 was also detected in the gastrointestinal tract, DRG, and dorsal horn, suggesting that CLR may associate with other RAMPs in these tissues to form a receptor for additional peptides such as adrenomedullin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Response of cotton (Gossypium hirsutum L. cv. NIAB-78) to salinity, in terms of seed germination, seedling root growth and root Na+ and K+ content was determined in a laboratory experiment. Cotton seeds were exposed to increasing salinity levels using germination water with Sodium chloride concentrations of 0, 50, 100, 150 and 200 mM, to provide different degrees of salt stress. Germinated seeds were counted and roots were harvested at 24, 48, 72 and 96 h after the start of the experiment. It appeared that seed germination was only slightly affected by an increase in salinity (in most cases the differences between treatment were non-significant), whereas root length, root growth rate, root fresh and dry weights were severely affected, generally highly significant differences in these variables were found for comparisons involving most combinations of salinity levels, in particular with increased incubation period. K+ contents decreased with increasing salinity levels, although differences in K+ content were only significant when comparing the control and the 4 salinity levels. Na+ content of the roots increased with increasing levels of NaCl in the germination water, suggesting an exchange of K+ for Na+. The ratio K+/Na+ strongly decreased with rising levels of salinity from around 4.5 for the control to similar to 1 at 200 mM NaCl.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Root characteristics of seedlings of five different barley genotypes were analysed in 2D using gel chambers, and in 3D using soil sacs that were destructively harvested and pots of soil that were assessed non-invasively using X-ray microtomography. After 5 days, Chime produced the greatest number of root axes (similar to 6) and Mehola significantly less (similar to 4) in all growing methods. Total root length was longest in GSH01915 and shortest in Mehola for all methods, but both total length and average root diameter were significantly larger for plants grown in gel chambers than those grown in soil. The ranking of particular growth traits (root number, root angular spread) of plants grown in gel plates, soil sacs and X-ray pots was similar, but plants grown in the gel chambers had a different order of ranking for root length to the soil-grown plants. Analysis of angles in soil-grown plants showed that Tadmore had the most even spread of individual roots and Chime had a propensity for non-uniform distribution and root clumping. The roots of Mehola were less well spread than the barley cultivars supporting the suggestion that wild and landrace barleys tend to have a narrower angular spread than modern cultivars. The three dimensional analysis of root systems carried out in this study provides insights into the limitations of screening methods for root traits and useful data for modelling root architecture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A quantitative model of wheat root systems is developed that links the size and distribution of the root system to the capture of water and nitrogen (which are assumed to be evenly distributed with depth) during grain filling, and allows estimates of the economic consequences of this capture to be assessed. A particular feature of the model is its use of summarizing concepts, and reliance on only the minimum number of parameters (each with a clear biological meaning). The model is then used to provide an economic sensitivity analysis of possible target characteristics for manipulating root systems. These characteristics were: root distribution with depth, proportional dry matter partitioning to roots, resource capture coefficients, shoot dry weight at anthesis, specific root weight and water use efficiency. From the current estimates of parameters it is concluded that a larger investment by the crop in fine roots at depth in the soil, and less proliferation of roots in surface layers, would improve yields by accessing extra resources. The economic return on investment in roots for water capture was twice that of the same amount invested for nitrogen capture. (C) 2003 Annals of Botany Company.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sorghum (Sorghum bicolor) was grown for 40 days in. rhizocylinder (a growth container which permitted access to rh zosphere and nonrhizosphere soil), in two soils of low P status. Soils were fertilized with different rates of ammonium and nitrate and supplemented with 40 mg phosphorus (P) kg(-1) and inoculated with either Glomus mosseae (Nicol. and Gerd.) or nonmycorrhizal root inoculum.. N-serve (2 mg kg(-1)) was added to prevent nitrification. At harvest, soil from around the roots was collected at distances of 0-5, 5-10, and 10-20 mm from the root core which was 35 mm diameter. Sorghum plants, with and without mycorrhiza, grew larger with NH4+ than with NO3- application. After measuring soil pH, 4 3 suspensions of the same sample were titrated against 0.01 M HCl or 0.01 M NaOH until soil pH reached the nonplanted pH level. The acid or base requirement for each sample was calculated as mmol H+ or OFF kg(-1) soil. The magnitude of liberated acid or base depended on the form and rate of nitrogen and soil type. When the plant root was either uninfected or infected with mycorrhiza., soil pH changes extended up to 5 mm from the root core surface. In both soils, ammonium as an N source resulted in lower soil pH than nitrate. Mycorrhizal (VAM) inoculation did not enhance this difference. In mycorrhizal inoculated soil, P depletion extended tip to 20 mm from the root surface. In non-VAM inoculated soil P depletion extended up to 10 mm from the root surface and remained unchanged at greater distances. In the mycorrhizal inoculated soils, the contribution of the 0-5 mm soil zone to P uptake was greater than the core soil, which reflects the hyphal contribution to P supply. Nitrogen (N) applications that caused acidification increased P uptake because of increased demand; there is no direct evidence that the increased uptake was due to acidity increasing the solubility of P although this may have been a minor effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tomato plants (Lycopersicon esculentum Mill. 'DRK') were grown hydroponically in two experiments to determine the effects of nutrient concentration and distribution in the root zone on yield, quality and blossom end rot (BER). The plants were grown in rockwool with their root systems divided into two portions. Each portion was irrigated with nutrient solutions with either the same or different electrical conductivity (EC) in the range 0 to 6 dS m(-1). In both experiments, fruit yields decreased as EC increased from moderate to high when solutions of equal concentration were applied to both portions of the root system. However, higher yields were obtained when a solution with high EC was applied to one portion of the root system and a solution of low EC to the other portion. For example, the fresh weight of mature fruits in the 6/6 treatment was only 20% that of the 3/3 treatment but the 6/0 treatment had a yield that was 40% higher. The reduction in yield in the high EC treatments was due to an increase in the number of fruits with BER and smaller fruit size. BER increased from 12% to 88% of total fruits as EC increased from 6/0 to 6/6 and fruit length decreased from 67 mm to 52 mm. Fruit quality (expressed as titratable acidity and soluble solids) increased as EC increased. In summary, high yields of high quality tomatoes with minimal incidence of BER were obtained when one portion of the root system was supplied with a solution of high EC and the other portion with a solution of moderate or zero EC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work was to investigate differences among genotypes in post-anthesis root growth and distribution of modern UK winter wheat cultivars, and the effects of fungicide applications. Post-anthesis root growth of up to six cultivars of winter wheat (Triticum aestivum L.), given either one or three applications of fungicide, was studied in field experiments during two seasons. Total root mass remained unchanged between GS63 (anthesis) and GS85, but root length increased significantly from 14.7 to 31.4 km m(2) in one season. Overall, there was no evidence for a decline in either root mass or length during grain filling. Root mass as a proportion of total plant mass was about 0.05 at GS85. There were significant differences among cultivars in root length and mass especially below 30 cm. Malacca had the smallest root length and Savannah the largest, and Shamrock had a significantly larger root system below 40 cm in both seasons. Fungicide applied at ear emergence had no significant effect on root mass in either season but increased root length (P < 0.01) in the more disease-prone season. By maintaining a green canopy for longer, fungicide applied at flag leaf emergence may have resulted in delayed senescence of the root system and contributed to the post-anthesis maintenance of root mass and length.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pseudomonas oryzihabitans, a bacterium associated with the entomopathogenic nematode Steinernema abbasi, was evaluated for its potential to colonise roots and thereby control a field population of root-knot nematodes. Immunological techniques were developed to detect root colonisation of P. oryzihabitans on tomato roots using a specific polyclonal antibody raised against vegetative bacterial cells. In vitro, bacterial cell filtrates were also shown significantly to inhibit juveniles hatching. In a glasshouse pot experiment, there were 22 and 82% fewer females in roots of plants treated with suspensions containing 10(3) and 10(6) cells ml(-1) of P oryzihabitans, respectively. In addition, there were significantly fewer egg masses produced; however, the numbers of eggs per egg mass did not differ significantly. The relationship between root colonisation and nematode control is discussed.