31 resultados para polar soils
Resumo:
The reliability of the global reanalyses in the polar regions is investigated. The overview stems from an April 2006 Scientific Committee on Antarctic Research (SCAR) workshop on the performance of global reanalyses in high latitudes held at the British Antarctic Survey. Overall, the skill is much higher in the Arctic than the Antarctic, where the reanalyses are only reliable in the summer months prior to the modern satellite era. In the Antarctic, large circulation differences between the reanalyses are found primarily before 1979, when vast quantities of satellite sounding data started to be assimilated. Specifically for ERA-40, this data discontinuity creates a marked jump in Antarctic snow accumulation, especially at high elevations. In the Arctic, the largest differences are related to the reanalyses depiction of clouds and their associated radiation impacts; ERA-40 captures the cloud variability much better than NCEP1 and JRA-25, but the ERA-40 and JRA-25 clouds are too optically thin for shortwave radiation. To further contrast the reanalyses skill, cyclone tracking results are presented. In the Southern Hemisphere, cyclonic activity is markedly different between the reanalyses, where there are few matched cyclones prior to 1979. In comparison, only some of the weaker cyclones are not matched in the Northern Hemisphere from 1958-2001, again indicating the superior skill in this hemisphere. Although this manuscript focuses on deficiencies in the reanalyses, it is important to note that they are a powerful tool for climate studies in both polar regions when used with a recognition of their limitations.
Resumo:
A new objective climatology of polar lows in the Nordic (Norwegian and Barents) seas has been derived from a database of diagnostics of objectively identified cyclones spanning the period January 2000 to April 2004. There are two distinct parts to this study: the development of the objective climatology and a characterization of the dynamical forcing of the polar lows identified. Polar lows are an intense subset of polar mesocyclones. Polar mesocyclones are distinguished from other cyclones in the database as those that occur in cold air outbreaks over the open ocean. The difference between the wet-bulb potential temperature at 700 hPa and the sea surface temperature (SST) is found to be an effective discriminator between the atmospheric conditions associated with polar lows and other cyclones in the Nordic seas. A verification study shows that the objective identification method is reliable in the Nordic seas region. After demonstrating success at identifying polar lows using the above method, the dynamical forcing of the polar lows in the Nordic seas is characterized. Diagnostics of the ratio of mid-level vertical motion attributable to quasi-geostrophic forcing from upper and lower levels (U/L ratio) are used to determine the prevalence of a recently proposed category of extratropical cyclogenesis, type C, for which latent heat release is crucial to development. Thirty-one percent of the objectively identified polar low events (36 from 115) exceeded the U/L ratio of 4.0, previously identified as a threshold for type C cyclones. There is a contrast between polar lows to the north and south of the Nordic seas. In the southern Norwegian Sea, the population of polar low events is dominated by type C cyclones. These possess strong convection and weak low-level baroclinicity. Over the Barents and northern Norwegian seas, the well-known cyclogenesis types A and B dominate. These possess stronger low-level baroclinicity and weaker convection.
A new look at stratospheric sudden warmings. Part III. Polar vortex evolution and vertical structure
Resumo:
The evolution of the Arctic polar vortex during observed major mid-winter stratospheric sudden warmings (SSWs) is investigated for the period 1957-2002, using European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-40 Ertel’s potential vorticity (PV) and temperature fields. Time-lag composites of vertically weighted PV, calculated relative to the SSW onset time, are derived for both vortex displacement SSWs and vortex splitting SSWs, by averaging over the 15 recorded displacement and 13 splitting events. The evolving vertical structure of the polar vortex during a typical SSW of each type is clearly illustrated by plotting an isosurface of the composite PV field, and is shown to be very close to that observed during representative individual events. Results are verified by comparison with an elliptical diagnostic vortex moment technique. For both types of SSW, little variation is found between individual events in the orientation of the developing vortex relative to the underlying topography, i.e. the location of the vortex during SSWs of each type is largely fixed in relation to the Earth’s surface. During each type of SSW, the vortex is found to have a distinctive vertical structure. Vortex splitting events are typically barotropic, with the vortex split occurring near-simultaneously over a large altitude range (20-40 km). In the majority of cases, of the two daughter vortices formed, it is the ‘Siberian’ vortex that dominates over its ‘Canadian’ counterpart. In contrast, displacement events are characterized by a very clear baroclinic structure; the vortex tilts significantly westward with height, so that the top and bottom of the vortex are separated by nearly 180◦ longitude before the upper vortex is sheared away and destroyed.
Resumo:
The polar vortex of the Southern Hemisphere (SH) split dramatically during September 2002. The large-scale dynamical effects were manifest throughout the stratosphere and upper troposphere, corresponding to two distinct cyclonic centers in the upper troposphere–stratosphere system. High-resolution (T511) ECMWF analyses, supplemented by analyses from the Met Office, are used to present a detailed dynamical analysis of the event. First, the anomalous evolution of the SH polar vortex is placed in the context of the evolution that is usually witnessed during spring. Then high-resolution fields of potential vorticity (PV) from ECMWF are used to reveal several dynamical features of the split. Vortex fragments are rapidly sheared out into sheets of high (modulus) PV, which subsequently roll up into distinct synoptic-scale vortices. It is proposed that the stratospheric circulation becomes hydrodynamically unstable through a significant depth of the troposphere–stratosphere system as the polar vortex elongates.
Resumo:
As zinc (Zn) is both an essential trace element and potential toxicant, the effects of Zn fixation in soil are of practical significance. Soil samples from four field sites amended with ZnSO4 were used to investigate ageing of soluble Zn under field conditions over a 2-year period. Lability of Zn measured using 65Zn radioisotope dilution showed a significant decrease over time and hence evidence of Zn fixation in three of the four soils. However, 0.01 M CaCl2 extractions and toxicity measurements using a genetically modified lux-marked bacterial biosensor did not indicate a decrease in soluble/bioavailable Zn over time. This was attributed to the strong regulatory effect of abiotic properties such as pH on these latter measurements. These results also showed that Zn ageing occurred immediately after Zn spiking, emphasising the need to incubate freshly spiked soils before ecotoxicity assessments. Ageing effects were detected in Zn-amended field soils using 65Zn isotopic dilution as a measure of lability, but not with either CaCl2 extractions or a lux-marked bacterial biosensor.
Resumo:
Increasing levels of CO2 and H+ proton in the rhizosphere from some legumes may play an important role in calcite dissolution of calcareous salt affected soils. Soils planted with white and brown varieties of cowpea (Vigna unguiculata L.) and hyacinth bean (Dolichos lablab L.) relying on either fertilizer N (KNO3) or N-fixation were compared against soils to which gypsum was applied and a control without plants and gypsum application to study the possibility of Ca2+ release from calcite and Na+ leaching. As compared to plants relying on inorganic N, leachates from all pore volumes (0·5, 1·0, 1·5, 2·0 pore volume) in lysimeters planted with N-fixing hyacinth bean contained significantly higher concentrations of HCO with lower concentrations from lysimeters planted with white cowpea relying on N-fixation. However, the lowest concentrations of HCO were recorded in the gypsum and control treatments. In initial leaching, lysimeters planted with N-fixing plants maintained similar leachate Ca2+ and Na+ concentrations compared to gypsum amended soils. However, gypsum amended soils were found to have a prolonged positive effect on Na+ removal. It might be concluded that some legumes that are known to fix N in calcareous salt affected soils may be an alternative ameliorant to the extremely expensive gypsum through calcite solubilization and a consequent release of Ca2+.
Resumo:
Organic materials such as compost are often proposed as suitable materials for the remediation of contaminated brownfield sites intended for soft end-use. In addition to vitalising the soil, they are also believed to immobilise metals thereby breaking contaminant-receptor pathways and reducing the ecotoxicity of the contaminants. However, some research has demonstrated contradictory effects between composts on metal immobilisation. In the present study, four different composts and a liming product containing organic matter (LimeX70) were tested to examine both their metal retention and toxicity reduction capabilities on three different metal contaminated soils. Leaching tests, a plant growth test with Greek cress (Lepidium sativum), an earthworm (Eisenia fetida) survival and condition test and a bacterial toxicity test using Vibrio fischeri were carried out. The leaching test results showed that spent mushroom compost caused an increase in metal concentration in the leachates, while LimeX70 caused a decrease. The variation in behaviour between different amendments for each soil was high, so a generic conclusion could not be drawn. Toxicity tests showed significant reduction of metal bioavailability and toxicity for Greek cress, earthworms and bacteria. The results also suggest that more research should be undertaken to understand the mechanisms involved in metal complexation using different types of organic matter, in order to optimise the use of organic materials like compost for soil remediation. Crown Copyright (C) 2007 Published by Elsevier Ltd. All rights reserved.
Resumo:
The uptake of arsenic (As) by plants from contaminated soils presents a health hazard that may affect the use of agricultural and former industrial land. Methods for limiting the hazard are desirable. A proposed remediation treatment comprises the precipitation of iron (Fe) oxides in the contaminated soil by adding ferrous sulfate and lime. The effects on As bioavailability were assessed using a range of vegetable crops grown in the field. Four UK locations were used, where soil was contaminated by As from different sources. At the most contaminated site, a clay loam containing a mean of 748 mg As kg(-1) soil, beetroot, calabrese, cauliflower, lettuce, potato, radish and spinach were grown. For all crops except spinach, ferrous sulfate treatment caused a significant reduction in the bioavailability of As in some part of the crop. Application of ferrous sulfate in solution, providing 0.2% Fe oxides in the soil (0-10 cm), reduced As uptake by a mean of 22%. Solid ferrous sulfate was applied to give concentrations of 0.5% and 1% Fe oxides: the 0.5% concentration reduced As uptake by a mean of 32% and the 1% concentration gave no significant additional benefit. On a sandy loam containing 65 mg As kg(-1) soil, there was tentative evidence that ferrous sulfate treatment up to 2% Fe oxides caused a significant reduction in lettuce As, but calabrese did not respond. At the other two sites, the effects of ferrous sulfate treatment were not significant, but the uptake of soil As was low in treated and untreated soils. Differences between sites in the bioavailable fraction of soil As may be related to the soil texture or the source of As. The highest bioavailability was found on the soil which had been contaminated by aerial deposition and had a high sand content. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Silicon release from rice straw and amorphous silica when shaken in solution with five Sri Lankan soils was studied indirectly using sorption isotherms and changes in concentration and directly using straw in dialysis bags examined using electron microscopy. The aim was to further our understanding of the processes and factors affecting the release of straw-Si in soils and its availability to rice. The soils (alfisols and ultisols) shaken with 0.1 M NaCl (5 g per 125 mL for 250 days) produced concentrations of 1 - 4 mg L-1 of monosilicic acid-Si. Amorphous silica added to these suspensions (36.5 mg, containing 17 mg Si) raised the concentrations to 20 - 40 mg L-1, and added rice straw (0.5 g, containing 17 mg Si) gave 10 - 25 mg L-1. Sorption isotherms (7 days equilibrations) were used to calculate from the concentrations the amounts of Si released ( 24 - 38% and 8 - 21%, respectively). Both materials gave about 40 mg L-1 of monosilicic acid-Si plus 30 mg L-1 of disilicic acid-Si when shaken in solution alone (5 g per 125 mL). Straw in dialysis bags ( 0.5 g per 25 mL in 0.1 M NaCl) was shaken in soil suspension ( 5 g per 100 mL) for 60 days. Similar concentrations and releases were measured to those obtained above. About one fifth of the mass of straw was lost by decomposition in the first 15 days. A chloroform treatment prevented decomposition, but Si release was unaffected. Disintegration continued throughout the experiments, with phytoliths being exposed and dissolved. Compared to the rate of release from straw into solution without soil, the release of Si into soil suspensions was increased during the first 20 days by adsorption on the soil, but was then reduced probably through the effect of Fe and Al on the phytolith surfaces. The extent of this blocking effect varied between soils and was not simply related to soil pH.
Resumo:
Three gypsiferous-calcareous soils from the Al-Hassa Oasis in Saudi Arabia were examined to determine the conditions under which dissolution of gypsum could be hindered by the formation of coatings of calcite during leaching. Batch extraction with water of a sandy clay loam, a sandy clay and a sandy loam containing 40, 26 and 5% gypsum and 14, 12 and 13% calcite respectively was followed by chemical analysis of the extracts, SEM examination and XRD and EDX microprobe analysis. Extraction in closed centrifuge tubes for I h or 5 h showed that initially gypsum dissolved to give solutions near to equilibrium but then in the sandy clay loam, between one quarter and one third of the gypsum could not dissolve. In the sandy clay about one fifth of the gypsum could not dissolve with none remaining in the sandy loam. All the extracts were close to equilibrium with calcite. SEM and EDX examination showed that coatings of calcite had formed on the gypsum particles. The sandy clay loam was also extracted using an open system in which either air or air +1% CO2 was bubbled through the suspensions for 1 h with stirring. The gypsum dissolved more rapidly and all of the gypsum dissolved. Thus, where the rate of dissolution of gypsum was rapid, calcite did not manage to cover the gypsum surfaces probably because the surface was being continuously removed. Slower leaching conditions in the field are likely to be conducive to the formation of coatings and less dissolution of gypsum. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A set of lysimeter based experiments was carried out during 2000/01 to evaluate the impact of soil type and grassland management on potassium (K) leaching. The effects of (1) four soil textures (sand, loam, loam over chalk and clay), (2) grazing and cutting (with farmyard manure application), and (3) K applied as inorganic fertilizer, dairy slurry or a mixture of both sources were tested. Total K losses in the clay soil were more than twice those in the sand soil (13 and 6 kg K ha(-1), respectively) because of the development of preferential flow in the clay soil. They were also greater in the cut treatment than in the grazed treatment (82 and 51 kg K ha(-1), respectively; P less than or equal to0.01), associated with a 63% increase of K concentration in the leachates from the former (6.7 +/- 0.28 and 4.1 +/- 0.22 mg K L-1 for cut and grazed, respectively; P less than or equal to0.01) because of the K input from the farmyard manure. The source of fertilizer did not affect total K losses or the average K concentration in the leachates (P >0.05), but it changed the pattern of these over time.