39 resultados para plant life-histories
Resumo:
We examine the extent of population-level differentiation in life history traits of Pogonatum aloides, Polytrichum commune and Polytrichum juniperinum (Polytrichaceae) between upland and lowland localities within Britain. Reciprocal transplant studies are used to estimate the relative importance of genetic versus environmental effects on observed differences. We demonstrate significant life history differentiation between moss populations, and show that at least some of these are genetically determined, although environment and phenotypic plasticity are also significant components of the observed variation. The transplant experiments indicate divergence among populations in plasticity of male reproductive effort and of investment in vegetative shoots by females. Two tradeoffs are identified; one between the number and the size of spores, and the second between reproduction by spores versus vegetative reproduction. The patterns of life history variation observed between populations of Polytrichum juniperinum are consistent with selection along these implied tradeoff curves, and we propose that they reflect selective pressures arising from the spatial and demographic distribution of mortality at upland versus lowland sites. The results underscore the need for more studies of intra-specific life history variation in mosses.
Resumo:
It has recently been proposed that life-history evolution is subject to a fundamental size-dependent constraint. This constraint limits the rate at which biomass can be produced so that production per unit of body mass is inevitably slower in larger organisms than in smaller ones. Here we derive predictions for how changes in body size and production rates evolve in different lifestyles subject to this constraint. Predictions are tested by using data on the mass of neonate tissue produced per adult per year in 637 placental mammal species and are generally supported. Compared with terrestrial insectivores with generalized primitive traits, mammals that have evolved more specialized lifestyles have divergent massspecific production rates: (i) increased in groups that specialize on abundant and reliable foods: grazing and browsing herbivores (artiodactyls, lagomorphs, perissoclactyls, and folivorous rodents) and flesh-eating marine mammals (pinnipeds, cetaceans); and (ii) decreased in groups that have lifestyles with reduced death rates: bats, primates, arboreal, fossorial, and desert rodents, bears, elephants, and rhinos. Convergent evolution of groups with similar lifestyles is common, so patterns of productivity across mammalian taxa reflect both ecology and phylogeny. The overall result is that groups with different lifestyles have parallel but offset relationships between production rate and body size. These results shed light on the evolution of the fast-slow life-history continuum, suggesting that variation occurs along two axes corresponding to body size and lifestyle.
Resumo:
This article discusses inductee music service teachers (to 25 years of age). It explores how their lives, as perceived, shape current identities in teaching and result in several career problems. Respondents were drawn from a comprehensive life history study of 28 Local Education Authority employees. Of this larger cohort, four were age 25 years and below, and the remaining 24 teachers made retrospective comments. Data were collected and analysed between October 2002 and March 2004. Principal findings suggest that schooling failed to address these educators' needs as musical learners; key childhood experiences were external of schools. This often resulted in an idealistic trajectory, in teenage years, towards an occupation as a performer. An occupation in music education was entirely disregarded. Consequently, inductees now consider training experiences an inappropriate platform for their professional lives. Managing group teaching and children's behaviour engenders considerable anxiety. Music service work is also deemed a transient state of affairs. There are implications for training, retention and professional development.
Resumo:
Although the role of the academic head of department (HoD) has always been important to university management and performance, an increasing significance given to bureaucracy, academic performance and productivity, and government accountability has greatly elevated the importance of this position. Previous research and anecdotal evidence suggests that as academics move into HoD roles, usually with little or no training, they experience a problem of struggling to adequately manage key aspects of their role. It is this problem – and its manifestations – that forms the research focus of this study. Based on the research question, “What are the career trajectories of academics who become HoDs in a selected post-1992 university?” the study aimed to achieve greater understanding of why academics become HoDs, what it is like being a HoD, and how the experience influences their future career plans. The study adopts an interpretive approach, in line with social constructivism. Edited topical life history interviews were undertaken with 17 male and female HoDs, from a range of disciplines, in a post-1992 UK university. These data were analysed using coding, categorisation and theme formation techniques and developing profiles of each of the respondents. The findings from this study suggest that academics who become HoDs not only need the capacity to assume a range of personal and professional identities, but need to regularly adopt and switch between them. Whether individuals can successfully balance and manage these multiple identities, or whether they experience major conflicts and difficulties within or between them, greatly affects their experiences of being a HoD and may influence their subsequent career decisions. It is claimed that the focus, approach and analytical framework - based on the interrelationships between the concepts of socialisation, identity and career trajectory - provide a distinct and original contribution to knowledge in this area. Although the results of this study cannot be generalised, the findings may help other individuals and institutions move towards a firmer understanding of the academic who becomes HoD - in relation to theory, practice and future research.
Resumo:
Recent work suggests that the environment experienced in early life can alter life histories in wild populations [1, 2, 3, 4 and 5], but our understanding of the processes involved remains limited [6 and 7]. Since anthropogenic environmental change is currently having a major impact on wild populations [8], this raises the possibility that life histories may be influenced by human activities that alter environmental conditions in early life. Whether this is the case and the processes involved remain unexplored in wild populations. Using 23 years of longitudinal data on the Mauritius kestrel (Falco punctatus), a tropical forest specialist, we found that females born in territories affected by anthropogenic habitat change shifted investment in reproduction to earlier in life at the expense of late life performance. They also had lower survival rates as young adults. This shift in life history strategy appears to be adaptive, because fitness was comparable to that of other females experiencing less anthropogenic modification in their natal environment. Our results suggest that human activities can leave a legacy on wild birds through natal environmental effects. Whether these legacies have a detrimental effect on populations will depend on life history responses and the extent to which these reduce individual fitness.
Resumo:
Habitat modification for agriculture is one of the greatest current threats to global biodiversity. Studies show large-scale population declines and short-term demographic impacts, but knowledge of the long-term effects of agriculture on individuals remains poor. This thesis examines the short- and long-term impact of agriculture on a reintroduced population of the Mauritius kestrel Falco punctatus, a tropical forest-dwelling raptor endemic to the island of Mauritius, that also utilises agricultural habitats. This population is a particularly appropriate model system, because complete life history data exists for individuals over a 22-year period, alongside detailed habitat and climate data. Agriculture has a short-term detrimental effect on Mauritius kestrel breeding success by exacerbating the seasonal decline in fledgling production. This is partly driven by the habitat-specific composition of the prey community that kestrels exploit to feed their chicks. The fledglings from agricultural territories tend to recruit in agricultural territories. This is largely due to poor natal dispersal and fine-scale spatial autocorrelation in the habitat matrix. Breeders do not respond to agriculture in the breeding territory by dispersing, unless the pair bond is broken. Therefore, individuals originating in agricultural territories tend to recruit, and remain in, agricultural territories throughout their lives. In addition to this, females from agricultural natal territories have shorter lifespans, schedule their peak reproductive output earlier in life, and exhibit more rapid senescence than non-agricultural females. The combination of this long-term effect and the adult experience of agriculture imposed by life history and environmental constraints, leads to a lower mean lifetime reproductive rate compared to females originating in non-agricultural habitats. These results demonstrate that agriculture experienced in early life has a lifelong effect on individuals. The effects can persist in time and space, with potentially delayed effects on population dynamics. These findings are important for understanding species’ responses to agricultural expansion.
Resumo:
The fungal family Clavicipitaceae includes plant symbionts and parasites that produce several psychoactive and bioprotective alkaloids. The family includes grass symbionts in the epichloae clade (Epichloë and Neotyphodium species), which are extraordinarily diverse both in their host interactions and in their alkaloid profiles. Epichloae produce alkaloids of four distinct classes, all of which deter insects, and some—including the infamous ergot alkaloids—have potent effects on mammals. The exceptional chemotypic diversity of the epichloae may relate to their broad range of host interactions, whereby some are pathogenic and contagious, others are mutualistic and vertically transmitted (seed-borne), and still others vary in pathogenic or mutualistic behavior. We profiled the alkaloids and sequenced the genomes of 10 epichloae, three ergot fungi (Claviceps species), a morning-glory symbiont (Periglandula ipomoeae), and a bamboo pathogen (Aciculosporium take), and compared the gene clusters for four classes of alkaloids. Results indicated a strong tendency for alkaloid loci to have conserved cores that specify the skeleton structures and peripheral genes that determine chemical variations that are known to affect their pharmacological specificities. Generally, gene locations in cluster peripheries positioned them near to transposon-derived, AT-rich repeat blocks, which were probably involved in gene losses, duplications, and neofunctionalizations. The alkaloid loci in the epichloae had unusual structures riddled with large, complex, and dynamic repeat blocks. This feature was not reflective of overall differences in repeat contents in the genomes, nor was it characteristic of most other specialized metabolism loci. The organization and dynamics of alkaloid loci and abundant repeat blocks in the epichloae suggested that these fungi are under selection for alkaloid diversification. We suggest that such selection is related to the variable life histories of the epichloae, their protective roles as symbionts, and their associations with the highly speciose and ecologically diverse cool-season grasses.
Resumo:
Comparative analyses of survival senescence by using life tables have identified generalizations including the observation that mammals senesce faster than similar-sized birds. These generalizations have been challenged because of limitations of life-table approaches and the growing appreciation that senescence is more than an increasing probability of death. Without using life tables, we examine senescence rates in annual individual fitness using 20 individual-based data sets of terrestrial vertebrates with contrasting life histories and body size. We find that senescence is widespread in the wild and equally likely to occur in survival and reproduction. Additionally, mammals senesce faster than birds because they have a faster life history for a given body size. By allowing us to disentangle the effects of two major fitness components our methods allow an assessment of the robustness of the prevalent life-table approach. Focusing on one aspect of life history - survival or recruitment - can provide reliable information on overall senescence.
Resumo:
The recently formulated metabolic theory of ecology has profound implications for the evolution of life histories. Metabolic rate constrains the scaling of production with body mass, so that larger organisms have lower rates of production on a mass-specific basis than smaller ones. Here, we explore the implications of this constraint for life-history evolution. We show that for a range of very simple life histories, Darwinian fitness is equal to birth rate minus death rate. So, natural selection maximizes birth and production rates and minimizes death rates. This implies that decreased body size will generally be favored because it increases production, so long as mortality is unaffected. Alternatively, increased body size will be favored only if it decreases mortality or enhances reproductive success sufficiently to override the preexisting production constraint. Adaptations that may favor evolution of larger size include niche shifts that decrease mortality by escaping predation or that increase fecundity by exploiting new abundant food sources. These principles can be generalized to better understand the intimate relationship between the genetic currency of evolution and the metabolic currency of ecology.
Resumo:
We estimate the body sizes of direct ancestors of extant carnivores, and examine selected aspects of life history as a function not only of species' current size, but also of recent changes in size. Carnivore species that have undergone marked recent evolutionary size change show life history characteristics typically associated with species closer to the ancestral body size. Thus, phyletic giants tend to mature earlier and have larger litters of smaller offspring at shorter intervals than do species of the same body size that are not phyletic giants. Phyletic dwarfs, by contrast, have slower life histories than nondwarf species of the same body size. We discuss two possible mechanisms for the legacy of recent size change: lag (in which life history variables cannot evolve as quickly as body size, leading to species having the 'wrong' life history for their body size) and body size optimization (in which life history and hence body size evolve in response to changes in energy availability); at present, we cannot distinguish between these alternatives. Our finding that recent body size changes help explain residual variation around life history allometries shows that a more dynamic view of character change enables comparative studies to make more precise predictions about species traits in the context of their evolutionary background.
Resumo:
1. Chemical effects on organisms are typically assessed using individual-level endpoints or sometimes population growth rate (PGR), but such measurements are generally made at low population densities. In contrast most natural populations are subject to density dependence and fluctuate around the environmental carrying capacity as a result of individual competition for resources. As ecotoxicology aims to make reliable population projections of chemical impacts in the field, an understanding of how high-density or resource-limited populations respond to environmental chemicals is essential. 2. Our objective was to determine the joint effects of population density and chemical stress on the life history and PGR of an important ecotoxicological indicator species, Chironomus riparius, under controlled laboratory conditions. Populations were fed the same ration but initiated at different densities and exposed to a solvent control and three concentrations of C-14-cypermethrin in a sediment-water test system for 67 days at 20 +/- 1 degreesC. 3. Density had a negative effect on all the measured life-history traits, and PGR declined with increasing density in the controls. Exposure to C-14-cypermethrin had a direct negative effect on juvenile survival, presumably within the first 24 h because the chemical rapidly dissipated from the water column. Reductions in the initial larval densities resulted in an increase in the available resources for the survivors. Subsequently, exposed populations emerged sooner and started producing offspring earlier than the controls. C-14-cypermethrin had no effect on estimated fecundity and adult body weight but interacted with density to reduce the time to first emergence and first reproduction. As a result, PGR increased with cypermethrin concentration when populations were initiated at high densities. 4. Synthesis and applications. The results showed that the effects of C-14-cypermethrin were buffered at high density, so that the joint effects of density and chemical stress on PGR were less than additive. Low levels of chemical stressors may increase carrying capacity by reducing juvenile competition for resources. More and perhaps fitter adults may be produced, similar to the effects of predators and culling; however, toxicant exposure may result in survivors that are less tolerant to changing conditions. If less than additive effects are typical in the field, standard regulatory tests carried out at low density may overestimate the effects of environmental chemicals. Further studies over a wide range of chemical stressors and organisms with contrasting life histories are needed to make general recommendations.
Resumo:
Plant traits – the morphological, anatomical, physiological, biochemical and phenological characteristics of plants and their organs – determine how primary producers respond to environmental factors, affect other trophic levels, influence ecosystem processes and services and provide a link from species richness to ecosystem functional diversity. Trait data thus represent the raw material for a wide range of research from evolutionary biology, community and functional ecology to biogeography. Here we present the global database initiative named TRY, which has united a wide range of the plant trait research community worldwide and gained an unprecedented buy-in of trait data: so far 93 trait databases have been contributed. The data repository currently contains almost three million trait entries for 69 000 out of the world's 300 000 plant species, with a focus on 52 groups of traits characterizing the vegetative and regeneration stages of the plant life cycle, including growth, dispersal, establishment and persistence. A first data analysis shows that most plant traits are approximately log-normally distributed, with widely differing ranges of variation across traits. Most trait variation is between species (interspecific), but significant intraspecific variation is also documented, up to 40% of the overall variation. Plant functional types (PFTs), as commonly used in vegetation models, capture a substantial fraction of the observed variation – but for several traits most variation occurs within PFTs, up to 75% of the overall variation. In the context of vegetation models these traits would better be represented by state variables rather than fixed parameter values. The improved availability of plant trait data in the unified global database is expected to support a paradigm shift from species to trait-based ecology, offer new opportunities for synthetic plant trait research and enable a more realistic and empirically grounded representation of terrestrial vegetation in Earth system models.
Resumo:
Question: What plant properties might define plant functional types (PFTs) for the analysis of global vegetation responses to climate change, and what aspects of the physical environment might be expected to predict the distributions of PFTs? Methods: We review principles to explain the distribution of key plant traits as a function of bioclimatic variables. We focus on those whole-plant and leaf traits that are commonly used to define biomes and PFTs in global maps and models. Results: Raunkiær's plant life forms (underlying most later classifications) describe different adaptive strategies for surviving low temperature or drought, while satisfying requirements for reproduction and growth. Simple conceptual models and published observations are used to quantify the adaptive significance of leaf size for temperature regulation, leaf consistency for maintaining transpiration under drought, and phenology for the optimization of annual carbon balance. A new compilation of experimental data supports the functional definition of tropical, warm-temperate, temperate and boreal phanerophytes based on mechanisms for withstanding low temperature extremes. Chilling requirements are less well quantified, but are a necessary adjunct to cold tolerance. Functional traits generally confer both advantages and restrictions; the existence of trade-offs contributes to the diversity of plants along bioclimatic gradients. Conclusions: Quantitative analysis of plant trait distributions against bioclimatic variables is becoming possible; this opens up new opportunities for PFT classification. A PFT classification based on bioclimatic responses will need to be enhanced by information on traits related to competition, successional dynamics and disturbance.