24 resultados para phosphocholine bilayers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Placental neurokinin B appears to be post-translationally modified by phosphocholine (PC) attached to the aspartyl side chain at residue 4 of the mature peptide. Corticotrophin releasing factor (CRF) was found to be expressed by the rat placenta with the main secreted forms being phosphocholinated proCRF+/- one or two polysaccharide moieties. A combination of high-pressure liquid chromatography (HPLC) and two-site immunometric analysis suggested that PC was also attached to the placental precursors of adrenocorticotrophin, hemokinin, activin and follistatin. However, the fully processed forms of rat placental activin and CRF were free of PC. Formerly, the parasitic filarial nematodes have used PC as a post-translational modification, attached via the polysaccharicle moiety of certain secretory glycoproteins to attenuate the host immune system allowing parasite survival, but it is the PC group itself which endows the carrier with the biological activity. The fact that treatment of proCRF peptides with phospholipase C but not endoglycosidase destroyed PC immunoreactivity suggested a simpler mode of attachment of PC to placental peptides than that used by nematodes. Thus, it is possible that by analogy the placenta uses its secreted phosphocholinated hormones to modulate the mother's immune system and help protect the placenta from rejection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The calcium-mediated interaction of DNA with monolayers of the non-toxic, zwitterionic phospholipid, 1,2-distearoyl-sn-glycero-3-phosphocholine when mixed with 50 mol% of a second lipid, either the zwitteronic 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine or neutral cholesterol was investigated using a combination of surface pressure-area isotherms, Brewster angle microscopy, external reflectance Fourier transform infrared spectroscopy and specular neutron reflectivity in combination with contrast variation. When calcium and DNA were both present in the aqueous subphase, changes were observed in the compression isotherms as well as the surface morphologies of the mixed lipid monolayers. In the presence of calcium and DNA, specular neutron reflectivity showed that directly underneath the head groups of the lipids comprising the monolayers, DNA occupied a layer comprising approximately 13 and 18% v/v DNA for the 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine and cholesterol-containing monolayers, respectively. The volume of the corresponding layer for 1,2-distearoyl-sn-glycero-3-phosphocholine only containing monolayers was ∼15% v/v DNA. Furthermore regardless of the presence and nature of the second lipid and the surface pressure of the monolayer, the specular neutron reflectivity experiments showed that the DNA-containing layer was 20–27 Å thick, suggesting the presence of a well-hydrated layer of double-stranded DNA. External reflectance Fourier transform infrared studies confirmed the presence of double stranded DNA, and indicated that the strands are in the B-form conformation. The results shed light on the interaction between lipids and nucleic acid cargo as well as the role of a second lipid in lipid-based carriers for drug delivery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Regulation of reactive oxygen species and cytosolic free calcium ([Ca2+](cyt)) is central to plant function. Annexins are small proteins capable of Ca2+-dependent membrane binding or membrane insertion. They possess structural motifs that could support both peroxidase activity and calcium transport. Here, a Zea mays annexin preparation caused increases in [Ca2+] cyt when added to protoplasts of Arabidopsis thaliana roots expressing aequorin. The pharmacological profile was consistent with annexin activation (at the extracellular plasma membrane face) of Arabidopsis Ca2+-permeable nonselective cation channels. Secreted annexins could therefore modulate Ca2+ influx. As maize annexins occur in the cytosol and plasma membrane, they were incorporated at the intracellular face of lipid bilayers designed to mimic the plasma membrane. Here, they generated an instantaneously activating Ca2+-permeable conductance at mildly acidic pH that was sensitive to verapamil and Gd3+ and had a Ca2+-to-K+ permeability ratio of 0.36. These results suggest that cytosolic annexins create a Ca2+ influx pathway directly, particularly during stress responses involving acidosis. A maize annexin preparation also demonstrated in vitro peroxidase activity that appeared independent of heme association. In conclusion, this study has demonstrated that plant annexins create Ca2+-permeable transport pathways, regulate [Ca2+] cyt, and may function as peroxidases in vitro.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper will document the early scientific observations that kindled my neuroendocrinological interest in pre-eclampsia, a life-threatening disease that affects both mother and baby. My interest in this subject started with the placental origin of melanotrophin activity, moving on, through corticotrophin-releasing factor and its binding protein, to a tachykinin modified specifically in the placenta by phosphocholine, a post-translational moiety normally used by parasites to avoid immune surveillance and rejection. This work may finally have led to an understanding of the identity of the elusive placental factor that, whilst attempting to compensate for the poor implantation of the placenta, causes the many symptoms seen in the mother during pre-eclampsia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We previously identified the function of the hepatitis C virus (HCV) p7 protein as an ion channel in artificial lipid bilayers and demonstrated that this in vitro activity is inhibited by amantadine. Here we show that the ion channel activity of HCV p7 expressed in mammalian cells can substitute for that of influenza virus M2 in a cell-based assay. This was also the case for the p7 from the related virus, bovine viral diarrhoea virus (BVDV). Moreover, amantadine was shown to abrogate HCV p7 function in this assay at a concentration that specifically inhibits M2. Mutation of a conserved basic loop located between the two predicted trans-membrane alpha helices rendered HCV p7 non-functional as an ion channel. The intracellular localization of p7 was unaffected by this mutation and was found to overlap significantly with membranes associated with mitochondria. Demonstration of p7 ion channel activity in cellular membranes and its inhibition by amantadine affirm the protein as a target for future anti-viral chemotherapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surface pressure measurements and external reflection FTIR spectroscopy have been used to probe protein-lipid interactions at the air/water interface. Spread monomolecular layers of stearic acid and phosphocholine were prepared and held at different compressed phase states prior to the introduction of protein to the buffered subphase. Contrasting interfacial behaviour of the proteins, albumin and lysozyme, was observed and revealed the role of both electrostatic and hydrophobic interactions in protein adsorption. The rate of adsorption of lysozyme to the air/water interface increased dramatically in the presence of stearic acid, due to strong electrostatic interactions between the negatively charged stearic acid head group and lysozyme, whose net charge at pH 7 is positive. Introduction of albumin to the subphase resulted in solubilisation of the stearic acid via the formation of an albumin-stearic acid complex and subsequent adsorption of albumin. This observation held for both human and bovine serum albumin. Protein adsorption to a PC layer held at low surface pressure revealed adsorption rates similar to adsorption to the bare air/water interface and suggested very little interaction between the protein and the lipid. For PC layers in their compressed phase state some adsorption of protein occurred after long adsorption times. Structural changes of both lysozyme and albumin were observed during adsorption, but these were dramatically reduced in the presence of a lipid layer compared to that of adsorption to the pure air/water interface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surface pressure measurements, external reflection- Fourier transform infrared spectroscopy, and neutron re. flectivity have been used to investigate the lipid-binding behavior of three antimicrobial peptides: melittin, magainin II, and cecropin P1. As expected, all three cationic peptides were shown to interact more strongly with the anionic lipid, 1,2 dihexadecanoyl-sn-glycerol3-( phosphor-rac-( 1- glycerol)) ( DPPG), compared to the zwitterionic lipid, 1,2 dihexadecanoyl-sn-glycerol-3-phosphocholine ( DPPC). All three peptides have been shown to penetrate DPPC lipid layers by surface pressure, and this was confirmed for the melittin-DPPC interaction by neutron reflectivity measurements. Adsorption of peptide was, however, minimal, with a maximum of 0.4 mg m(-2) seen for melittin adsorption compared to 2.1 mg m(-2) for adsorption to DPPG ( from 0.7 mu M solution). The mode of binding to DPPG was shown to depend on the distribution of basic residues within the peptide alpha-helix, although in all cases adsorption below the lipid layer was shown to dominate over insertion within the layer. Melittin adsorption to DPPG altered the lipid layer structure observed through changes in the external reflection-Fourier transform infrared lipid spectra and neutron reflectivity. This lipid disruption was not observed for magainin or cecropin. In addition, melittin binding to both lipids was shown to be 50% greater than for either magainin or cecropin. Adsorption to the bare air-water interface was also investigated and surface activity followed the trend melittin. magainin. cecropin. External re. ection- Fourier transform infrared amide spectra revealed that melittin adopted a helical structure only in the presence of lipid, whereas magainin and cecropin adopted helical structure also at an airwater interface. This behavior has been related to the different charge distributions on the peptide amino acid sequences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Complement-mediated inflammation exacerbates the tissue injury of ischaemic necrosis in heart attacks and strokes, the most common causes of death in developed countries. Large infarct size increases immediate morbidity and mortality and, in survivors of the acute event, larger non-functional scars adversely affect long-term prognosis. There is thus an important unmet medical need for new cardioprotective and neuroprotective treatments. We have previously shown that human C-reactive protein (CRP), the classical acute-phase protein that binds to ligands exposed in damaged tissue and then activates complement(1), increases myocardial and cerebral infarct size in rats subjected to coronary or cerebral artery ligation, respectively(2,3). Rat CRP does not activate rat complement, whereas human CRP activates both rat and human complement(4). Administration of human CRP to rats is thus an excellent model for the actions of endogenous human CRP2,3. Here we report the design, synthesis and efficacy of 1,6-bis(phosphocholine)-hexane as a specific small-molecule inhibitor of CRP. Five molecules of this palindromic compound are bound by two pentameric CRP molecules, crosslinking and occluding the ligand-binding B-face of CRP and blocking its functions. Administration of 1,6-bis(phosphocholine)-hexane to rats undergoing acute myocardial infarction abrogated the increase in infarct size and cardiac dysfunction produced by injection of human CRP. Therapeutic inhibition of CRP is thus a promising new approach to cardioprotection in acute myocardial infarction, and may also provide neuroprotection in stroke. Potential wider applications include other inflammatory, infective and tissue-damaging conditions characterized by increased CRP production, in which binding of CRP to exposed ligands in damaged cells may lead to complement-mediated exacerbation of tissue injury.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nanostructure of a peptide amphiphile in commercial use in anti-wrinkle creams is investigated. The peptide contains a matrikine, collagen-stimulating, pentapeptide sequence. Selfassembly into giant nanotapes is observed and the internal structure was found to comprise bilayers parallel to the flat tape surfaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reaction between gas-phase ozone and monolayers of the unsaturated lipid 1-palmitoy1-2-oleoyl-sn-glycero-3-phosphocholine, POPC, on aqueous solutions has been studied in real time using neutron reflection and surface pressure measurements. The reaction between ozone and lung surfactant, which contains POPC, leads to decreased pulmonary function, but little is known shout the changes that occur to the interfacial material as a result of oxidation. The results reveal that the initial reaction of ozone with POPC leads to a rapid increase in surface pressure followed by a slow decrease to very low values. The neutron reflection measurements, performed on an isotopologue of POPC with a selectively deuterated palmitoyl strand, reveal that the reaction leads to loss of this strand from the air-water interface. suggesting either solubilization of the product lipid or degradation of the palmitoyl strand by a reactive species. Reactions of H-1-POPC on D2O reveal that the headgroup region of the lipids in aqueous solution is not dramatically perturbed by the reaction of POPC monolayers with ozone supporting degradation of the palmitoyl strand rather than solubilization. The results are consistent with the reaction of ozone with the oleoyl strand of POPC at the air water interface leading to the formation of OH radicals. the highly reactive OH radicals produced can then go on to react with the saturated palmitoyl strands leading to the formation or oxidized lipids with shorter alkyl tails.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To characterize the impact of gut microbiota on host metabolism, we investigated the multicompartmental metabolic profiles of a conventional mouse strain (C3H/HeJ) (n=5) and its germ-free (GF) equivalent (n=5). We confirm that the microbiome strongly impacts on the metabolism of bile acids through the enterohepatic cycle and gut metabolism (higher levels of phosphocholine and glycine in GF liver and marked higher levels of bile acids in three gut compartments). Furthermore we demonstrate that (1) well-defined metabolic differences exist in all examined compartments between the metabotypes of GF and conventional mice: bacterial co-metabolic products such as hippurate (urine) and 5-aminovalerate (colon epithelium) were found at reduced concentrations, whereas raffinose was only detected in GF colonic profiles. (2) The microbiome also influences kidney homeostasis with elevated levels of key cell volume regulators (betaine, choline, myo-inositol and so on) observed in GF kidneys. (3) Gut microbiota modulate metabotype expression at both local (gut) and global (biofluids, kidney, liver) system levels and hence influence the responses to a variety of dietary modulation and drug exposures relevant to personalized health-care investigations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first application of high field NMR spectroscopy (800 MHz for 1H observation) to human hepatic bile (as opposed to gall bladder bile) is reported. The bile sample used for detailed investigation was from a donor liver with mild fat infiltration, collected during organ retrieval prior to transplantation. In addition, to focus on the detection of bile acids in particular, a bile extract was analysed by 800 MHz 1H NMR spectroscopy, HPLC-NMR/MS and UPLC-MS. In the whole bile sample, 40 compounds have been assigned with the aid of two-dimensional 1H–1H TOCSY and 1H–13C HSQC spectra. These include phosphatidylcholine, 14 amino acids, 10 organic acids, 4 carbohydrates and polyols (glucose, glucuronate, glycerol and myo-inositol), choline, phosphocholine, betaine, trimethylamine-N-oxide and other small molecules. An initial NMR-based assessment of the concentration range of some key metabolites has been made. Some observed chemical shifts differ from expected database values, probably due to a difference in bulk diamagnetic susceptibility. The NMR spectra of the whole extract gave identification of the major bile acids (cholic, deoxycholic and chenodeoxycholic), but the glycine and taurine conjugates of a given bile acid could not be distinguished. However, this was achieved by HPLC-NMR/MS, which enabled the separation and identification of ten conjugated bile acids with relative abundances varying from approximately 0.1% (taurolithocholic acid) to 34.0% (glycocholic acid), of which, only the five most abundant acids could be detected by NMR, including the isomers glycodeoxycholic acid and glycochenodeoxycholic acid, which are difficult to distinguish by conventional LC-MS analysis. In a separate experiment, the use of UPLC-MS allowed the detection and identification of 13 bile acids. This work has shown the complementary potential of NMR spectroscopy, MS and hyphenated NMR/MS for elucidating the complex metabolic profile of human hepatic bile. This will be useful baseline information in ongoing studies of liver excretory function and organ transplantation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The peptide AAKLVFF assembles into fibrils in water and nanotubes in methanol. Solid-state NMR data are consistent with fibrils constructed from β-sheet bilayers and nanotubes bounded by a wall of offset β-sheet monolayers. Remarkably distinct morphologies are thus traced to subtle differences in the arrangement of the same fundamental building blocks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plant cell growth and stress signaling require Ca2+ influx through plasma membrane transport proteins that are regulated by reactive oxygen species. In root cell growth, adaptation to salinity stress, and stomatal closure, such proteins operate downstream of the plasma membrane NADPH oxidases that produce extracellular superoxide anion, a reactive oxygen species that is readily converted to extracellular hydrogen peroxide and hydroxyl radicals, OH_. In root cells, extracellular OH_ activates a plasma membrane Ca2+-permeable conductance that permits Ca2+ influx. In Arabidopsis thaliana, distribution of this conductance resembles that of annexin1 (ANN1). Annexins are membrane binding proteins that can form Ca2+-permeable conductances in vitro. Here, the Arabidopsis loss-of-function mutant for annexin1 (Atann1) was found to lack the root hair and epidermal OH_-activated Ca2+- and K+-permeable conductance. This manifests in both impaired root cell growth and ability to elevate root cell cytosolic free Ca2+ in response to OH_. An OH_-activated Ca2+ conductance is reconstituted by recombinant ANN1 in planar lipid bilayers. ANN1 therefore presents as a novel Ca2+-permeable transporter providing a molecular link between reactive oxygen species and cytosolic Ca2+ in plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The self-assembly of the peptide amphiphile (PA) hexadecyl-(β-alaninehistidine) is examined in aqueous solution, along with its mixtures with multilamellar vesicles formed by DPPC (dipalmitoyl phosphatidylcholine). This PA, denoted C16-βAH, contains a dipeptide headgroup corresponding to the bioactive molecule L-carnosine. It is found to selfassemble into nanotapes based on stacked layers of molecules. Bilayers are found to coexist with monolayers in which the PA molecules pack with alternating up−down arrangement so that the headgroups decorate both surfaces. The bilayers become dehydrated as PA concentration increases and the number of layers in the stack decreases to produce ultrathin nanotapes comprised of 2−3 bilayers. Addition of the PA to DPPC multilamellar vesicles leads to a transition to well-defined unilamellar vesicles. The unique ability to modulate the stacking of this PA as a function of concentration, combined with its ability to induce a multilamellar to unilamellar thinning of DPPC vesicles, may be useful in biomaterials applications where the presentation of the peptide function at the surface of self-assembled nanostructures is crucial.