59 resultados para paper wasp
Resumo:
The annual round of refereeing for the ARCOM conference always prompts a stimulating debate among the committee members as to what constitutes a good research paper. Clearly, there is a good deal of subjectivity in distinguishing good from bad, but there may be some basic characteristics that mark out a research paper from any other kind of paper, and it is good research papers that we would like to encourage at the annual conference.
Resumo:
A determination key to the Central European paper wasps (Polistinae – Polistes Latreille, 1802 – eight species) and social wasps (Vespinae – 11 species: Vespa Linnaeus, 1758 – one species, Vespula Thomson, 1869 – four species, Dolichovespula Rohwer, 1916 – six species) is given. Distribution and biotope requirements of all species in the Czech Republic and Slovakia are briefly mentioned. All social wasps occur more or less regularly in both countries. Four paper wasps are relatively common but four other species (Polistes atrimandibularis Zimmermann, 1930, P. sulcifer Zimmermann, 1930, P. associus Kohl, 1898, and P. gallicus (Linnaeus, 1767)) are very rare with the Czech Republic and/or Slovakia at the northern edge of their range.
Resumo:
Oak galls are spectacular extended phenotypes of gallwasp genes in host oak tissues and have evolved complex morphologies that serve, in part, to exclude parasitoid natural enemies. Parasitoids and their insect herbivore hosts have coevolved to produce diverse communities comprising about a third of all animal species. The factors structuring these communities, however, remain poorly understood. An emerging theme in community ecology is the need to consider the effects of host traits, shaped by both natural selection and phylogenetic history, on associated communities of natural enemies. Here we examine the impact of host traits and phylogenetic relatedness on 48 ecologically closed and species-rich communities of parasitoids attacking gall-inducing wasps on oaks. Gallwasps induce the development of spectacular and structurally complex galls whose species- and generation-specific morphologies are the extended phenotypes of gallwasp genes. All the associated natural enemies attack their concealed hosts through gall tissues, and several structural gall traits have been shown to enhance defence against parasitoid attack. Here we explore the significance of these and other host traits in predicting variation in parasitoid community structure across gallwasp species. In particular, we test the "Enemy Hypothesis,'' which predicts that galls with similar morphology will exclude similar sets of parasitoids and therefore have similar parasitoid communities. Having controlled for phylogenetic patterning in host traits and communities, we found significant correlations between parasitoid community structure and several gall structural traits (toughness, hairiness, stickiness), supporting the Enemy Hypothesis. Parasitoid community structure was also consistently predicted by components of the hosts' spatiotemporal niche, particularly host oak taxonomy and gall location (e.g., leaf versus bud versus seed). The combined explanatory power of structural and spatiotemporal traits on community structure can be high, reaching 62% in one analysis. The observed patterns derive mainly from partial niche specialisation of highly generalist parasitoids with broad host ranges (>20 hosts), rather than strict separation of enemies with narrower host ranges, and so may contribute to maintenance of the richness of generalist parasitoids in gallwasp communities. Though evolutionary escape from parasitoids might most effectively be achieved via changes in host oak taxon, extreme conservatism in this trait for gallwasps suggests that selection is more likely to have acted on gall morphology and location. Any escape from parasitoids associated with evolutionary shifts in these traits has probably only been transient, however, due to subsequent recruitment of parasitoid species already attacking other host galls with similar trait combinations.
Resumo:
Despite theoretical predictions, dishonest signalling has rarely been observed in aggressive interactions. We present evidence of such signalling in the nonpollinating. g wasp Philotrypesis sp. A ex Ficus rubiginosa. First, morphometric data indicated that an alternative 'atypical' male morph (17.8% of individuals) exists that tends to be larger in body size and has longer mandibles for a given body size than other 'typical' males. Second, behavioural observations suggested that males use mandible gape width (which depends on mandible length) as a cue to assess opponents before fights and retreat without escalating if they are unlikely to win, and, probably because their greater mandible gape width causes more opponents to retreat without escalating, that atypical males engaged in fewer fights than typical males for a given body size but had higher mating success. Third, atypical males were less likely to win fights than typical males of similar mandible length relative to opponents. In addition, we found that atypical males incur more injuries (greater receiver-dependent signal costs) than typical males of similar body size relative to rivals. We discuss the implications of our findings for future work on dishonest signalling. (C) 2009 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
Fig trees are pollinated by fig wasps, which also oviposit in female flowers. The wasp larvae gall and eat developing seeds. Although fig trees benefit from allowing wasps to oviposit, because the wasp offspring disperse pollen, figs must prevent wasps from ovipositing in all flowers, or seed production would cease, and the mutualism would go extinct. In Ficus racemosa, we find that syconia (‘figs’) that have few foundresses (ovipositing wasps) are underexploited in the summer (few seeds, few galls, many empty ovules) and are overexploited in the winter (few seeds, many galls, few empty ovules). Conversely, syconia with many foundresses produce intermediate numbers of galls and seeds, regardless of season. We use experiments to explain these patterns, and thus, to explain how this mutualism is maintained. In the hot summer, wasps suffer short lifespans and therefore fail to oviposit in many flowers. In contrast, cooler temperatures in the winter permit longer wasp lifespans, which in turn allows most flowers to be exploited by the wasps. However, even in winter, only in syconia that happen to have few foundresses are most flowers turned into galls. In syconia with higher numbers of foundresses, interference competition reduces foundress lifespans, which reduces the proportion of flowers that are galled. We further show that syconia encourage the entry of multiple foundresses by delaying ostiole closure. Taken together, these factors allow fig trees to reduce galling in the wasp-benign winter and boost galling (and pollination) in the wasp-stressing summer. Interference competition has been shown to reduce virulence in pathogenic bacteria. Our results show that interference also maintains cooperation in a classic, cooperative symbiosis, thus linking theories of virulence and mutualism. More generally, our results reveal how frequency-dependent population regulation can occur in the fig-wasp mutualism, and how a host species can ‘set the rules of the game’ to ensure mutualistic behavior in its symbionts.
Resumo:
1. Fig trees (Ficus) are pollinated only by agaonid wasps, whose larvae also gall fig ovules. Each ovule develops into either a seed (when pollinated) or a wasp (when an egg is also laid inside) but not both. 2. Ovipositing wasps (foundresses) favour ovules near the centre of the enclosed inflorescence (syconium or 'fig'), leaving ovules near the outer wall to develop into seeds. This spatial stratification of wasps and seeds ensures reproduction in both partners, and thereby enables mutualism persistence. However, the mechanism(s) responsible remain(s) unknown. 3. Theory shows that foundresses will search for increasingly rare inner ovules and ignore outer ovules, as long as ovipositing in outer ovules is sufficiently slow and/or if inner ovules confer greater fitness to wasps. The fig-pollinator mutualism can therefore be stabilized by strong time constraints on foundresses and by offspring fitness gradients over variation in ovule position. 4. Female fig wasps cannot leave their galls without male assistance. We found that females in outer ovules were unlikely to be released. Inner ovules thus have added value to foundresses, because their female offspring are more likely to mate and disperse. 5. For those offspring that did emerge, gall position (inner/outer) and body size did not influence the order in which female pollinators exited syconia, nor did early emerging wasps enjoy increased life spans. 6. We also found that the life spans of female wasps nearly doubled when given access to moisture. We suggest that conflict resolution in the fig-pollinator mutualism may thus be influenced by tropical seasonality, because wasps may be less able to over-exploit ovules in dry periods due to time constraints.
Resumo:
Although theory exists concerning the types of strategies that should be used in contests over resources, empirical work explicitly testing its predictions is relatively rare. We investigated male fighting strategies in two nonpollinating. g wasp species associated with Ficus rubiginosa figs. In Sycoscapter sp. A, males did not assess each other before or during fights over mating opportunities. Instead,fights continued until the loser reached an energetic cost threshold that was positively correlated with its body size (fighting ability) and retreated. In Philotrypesis sp. B, pre fight assessment was indicated, with males attacking competitively inferior rivals to remove them from the competitor pool ( they then continued to do so until they reached a cost threshold that was again positively correlated with body size). Using data on species ecology, we discuss our findings with respect to theory on when different fighting strategies should evolve. We argue that the type of strategy used by a. g wasp species is determined by its relative benefits in terms of inclusive fitness. (c) 2008 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
Thermal non-destructive testing (NDT) is commonly used for assessing aircraft structures. This research work evaluates the potential of pulsed -- transient thermography for locating fixtures beneath aircraft skins in order to facilitate accurate automated assembly operations. Representative aluminium and carbon fibre aircraft skin-fixture assemblies were modelled using thermal modelling software. The assemblies were also experimentally investigated with an integrated pulsed thermographic evaluation system, as well as using a custom built system incorporating a miniature un-cooled camera. Modelling showed that the presence of an air gap between skin and fixture significantly reduced the thermal contrast developed, especially in aluminium. Experimental results show that fixtures can be located to accuracies of 0.5 mm.