113 resultados para multivariate stochastic volatility
Resumo:
Major research on equity index dynamics has investigated only US indices (usually the S&P 500) and has provided contradictory results. In this paper a clarification and extension of that previous research is given. We find that European equity indices have quite different dynamics from the S&P 500. Each of the European indices considered may be satisfactorily modelled using either an affine model with price and volatility jumps or a GARCH volatility process without jumps. The S&P 500 dynamics are much more difficult to capture in a jump-diffusion framework.
Resumo:
The relationship between price volatility and competition is examined. Atheoretic, vector auto regressions on farm prices of wheat and retail prices of derivatives (flour, bread, pasta, bulgur and cookies) are compared to results from a dynamic, simultaneous-equations model with theory-based farm-to-retail linkages. Analytical results yield insights about numbers of firms and their impacts on demand- and supply-side multipliers, but the applications to Turkish time series (1988:1-1996:12) yield mixed results.
Resumo:
In this paper, we study jumps in commodity prices. Unlike assumed in existing models of commodity price dynamics, a simple analysis of the data reveals that the probability of tail events is not constant but depends on the time of the year, i.e. exhibits seasonality. We propose a stochastic volatility jump–diffusion model to capture this seasonal variation. Applying the Markov Chain Monte Carlo (MCMC) methodology, we estimate our model using 20 years of futures data from four different commodity markets. We find strong statistical evidence to suggest that our model with seasonal jump intensity outperforms models featuring a constant jump intensity. To demonstrate the practical relevance of our findings, we show that our model typically improves Value-at-Risk (VaR) forecasts.
Resumo:
Recent research has suggested that forecast evaluation on the basis of standard statistical loss functions could prefer models which are sub-optimal when used in a practical setting. This paper explores a number of statistical models for predicting the daily volatility of several key UK financial time series. The out-of-sample forecasting performance of various linear and GARCH-type models of volatility are compared with forecasts derived from a multivariate approach. The forecasts are evaluated using traditional metrics, such as mean squared error, and also by how adequately they perform in a modern risk management setting. We find that the relative accuracies of the various methods are highly sensitive to the measure used to evaluate them. Such results have implications for any econometric time series forecasts which are subsequently employed in financial decisionmaking.
Resumo:
This paper models the transmission of shocks between the US, Japanese and Australian equity markets. Tests for the existence of linear and non-linear transmission of volatility across the markets are performed using parametric and non-parametric techniques. In particular the size and sign of return innovations are important factors in determining the degree of spillovers in volatility. It is found that a multivariate asymmetric GARCH formulation can explain almost all of the non-linear causality between markets. These results have important implications for the construction of models and forecasts of international equity returns.
Resumo:
A driver controls a car by turning the steering wheel or by pressing on the accelerator or the brake. These actions are modelled by Gaussian processes, leading to a stochastic model for the motion of the car. The stochastic model is the basis of a new filter for tracking and predicting the motion of the car, using measurements obtained by fitting a rigid 3D model to a monocular sequence of video images. Experiments show that the filter easily outperforms traditional filters.
Resumo:
Satellite-based rainfall monitoring is widely used for climatological studies because of its full global coverage but it is also of great importance for operational purposes especially in areas such as Africa where there is a lack of ground-based rainfall data. Satellite rainfall estimates have enormous potential benefits as input to hydrological and agricultural models because of their real time availability, low cost and full spatial coverage. One issue that needs to be addressed is the uncertainty on these estimates. This is particularly important in assessing the likely errors on the output from non-linear models (rainfall-runoff or crop yield) which make use of the rainfall estimates, aggregated over an area, as input. Correct assessment of the uncertainty on the rainfall is non-trivial as it must take account of • the difference in spatial support of the satellite information and independent data used for calibration • uncertainties on the independent calibration data • the non-Gaussian distribution of rainfall amount • the spatial intermittency of rainfall • the spatial correlation of the rainfall field This paper describes a method for estimating the uncertainty on satellite-based rainfall values taking account of these factors. The method involves firstly a stochastic calibration which completely describes the probability of rainfall occurrence and the pdf of rainfall amount for a given satellite value, and secondly the generation of ensemble of rainfall fields based on the stochastic calibration but with the correct spatial correlation structure within each ensemble member. This is achieved by the use of geostatistical sequential simulation. The ensemble generated in this way may be used to estimate uncertainty at larger spatial scales. A case study of daily rainfall monitoring in the Gambia, west Africa for the purpose of crop yield forecasting is presented to illustrate the method.
Resumo:
We discuss and test the potential usefulness of single-column models (SCMs) for the testing of stchastic physics schemes that have been proposed for use in general circulation models (GCMs). We argue that although single column tests cannot be definitive in exposing the full behaviour of a stochastic method in the full GCM, and although there are differences between SCM testing of deterministic and stochastic methods, nonetheless SCM testing remains a useful tool. It is necessary to consider an ensemble of SCM runs produced by the stochastic method. These can be usefully compared to deterministic ensembles describing initial condition uncertainty and also to combinations of these (with structural model changes) into poor man's ensembles. The proposed methodology is demonstrated using an SCM experiment recently developed by the GCSS community, simulating the transitions between active and suppressed periods of tropical convection.
Resumo:
A stochastic parameterization scheme for deep convection is described, suitable for use in both climate and NWP models. Theoretical arguments and the results of cloud-resolving models, are discussed in order to motivate the form of the scheme. In the deterministic limit, it tends to a spectrum of entraining/detraining plumes and is similar to other current parameterizations. The stochastic variability describes the local fluctuations about a large-scale equilibrium state. Plumes are drawn at random from a probability distribution function (pdf) that defines the chance of finding a plume of given cloud-base mass flux within each model grid box. The normalization of the pdf is given by the ensemble-mean mass flux, and this is computed with a CAPE closure method. The characteristics of each plume produced are determined using an adaptation of the plume model from the Kain-Fritsch parameterization. Initial tests in the single column version of the Unified Model verify that the scheme is effective in producing the desired distributions of convective variability without adversely affecting the mean state.
Resumo:
Finite computing resources limit the spatial resolution of state-of-the-art global climate simulations to hundreds of kilometres. In neither the atmosphere nor the ocean are small-scale processes such as convection, clouds and ocean eddies properly represented. Climate simulations are known to depend, sometimes quite strongly, on the resulting bulk-formula representation of unresolved processes. Stochastic physics schemes within weather and climate models have the potential to represent the dynamical effects of unresolved scales in ways which conventional bulk-formula representations are incapable of so doing. The application of stochastic physics to climate modelling is a rapidly advancing, important and innovative topic. The latest research findings are gathered together in the Theme Issue for which this paper serves as the introduction.