43 resultados para multiple data sources


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we systematically compare a wide range of observational and numerical precipitation datasets for Central Asia. Data considered include two re-analyses, three datasets based on direct observations, and the output of a regional climate model simulation driven by a global re-analysis. These are validated and intercompared with respect to their ability to represent the Central Asian precipitation climate. In each of the datasets, we consider the mean spatial distribution and the seasonal cycle of precipitation, the amplitude of interannual variability, the representation of individual yearly anomalies, the precipitation sensitivity (i.e. the response to wet and dry conditions), and the temporal homogeneity of precipitation. Additionally, we carried out part of these analyses for datasets available in real time. The mutual agreement between the observations is used as an indication of how far these data can be used for validating precipitation data from other sources. In particular, we show that the observations usually agree qualitatively on anomalies in individual years while it is not always possible to use them for the quantitative validation of the amplitude of interannual variability. The regional climate model is capable of improving the spatial distribution of precipitation. At the same time, it strongly underestimates summer precipitation and its variability, while interannual variations are well represented during the other seasons, in particular in the Central Asian mountains during winter and spring

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When speech is in competition with interfering sources in rooms, monaural indicators of intelligibility fail to take account of the listener’s abilities to separate target speech from interfering sounds using the binaural system. In order to incorporate these segregation abilities and their susceptibility to reverberation, Lavandier and Culling [J. Acoust. Soc. Am. 127, 387–399 (2010)] proposed a model which combines effects of better-ear listening and binaural unmasking. A computationally efficient version of this model is evaluated here under more realistic conditions that include head shadow, multiple stationary noise sources, and real-room acoustics. Three experiments are presented in which speech reception thresholds were measured in the presence of one to three interferers using real-room listening over headphones, simulated by convolving anechoic stimuli with binaural room impulse-responses measured with dummy-head transducers in five rooms. Without fitting any parameter of the model, there was close correspondence between measured and predicted differences in threshold across all tested conditions. The model’s components of better-ear listening and binaural unmasking were validated both in isolation and in combination. The computational efficiency of this prediction method allows the generation of complex “intelligibility maps” from room designs. © 2012 Acoustical Society of America

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Variability in the strength of the stratospheric Lagrangian mean meridional or Brewer-Dobson circulation and horizontal mixing into the tropics over the past three decades are examined using observations of stratospheric mean age of air and ozone. We use a simple representation of the stratosphere, the tropical leaky pipe (TLP) model, guided by mean meridional circulation and horizontal mixing changes in several reanalyses data sets and chemistry climate model (CCM) simulations, to help elucidate reasons for the observed changes in stratospheric mean age and ozone. We find that the TLP model is able to accurately simulate multiyear variability in ozone following recent major volcanic eruptions and the early 2000s sea surface temperature changes, as well as the lasting impact on mean age of relatively short-term circulation perturbations. We also find that the best quantitative agreement with the observed mean age and ozone trends over the past three decades is found assuming a small strengthening of the mean circulation in the lower stratosphere, a moderate weakening of the mean circulation in the middle and upper stratosphere, and a moderate increase in the horizontal mixing into the tropics. The mean age trends are strongly sensitive to trends in the horizontal mixing into the tropics, and the uncertainty in the mixing trends causes uncertainty in the mean circulation trends. Comparisons of the mean circulation and mixing changes suggested by the measurements with those from a recent suite of CCM runs reveal significant differences that may have important implications on the accurate simulation of future stratospheric climate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: People with schizophrenia are more violent than the general population, but this increased risk is attributable to the actions of a small subgroup. Identifying those at risk has become an essential part of clinical practice. Aims: To estimate the risk factors for assault in patients with schizophrenia. Methods: Two hundred seventy-one patients with schizophrenia were interviewed using an extensive battery of instruments. Assault was measured from multiple data sources over the next 2 years and criminal records were obtained. Multiple sociodemographic and clinical variables measured at baseline were examined as possible predictors of assault during follow-up. Results: Sixty-nine (25%) patients committed assault during the 2-year followup. The model that best predicted assault included a history of recent assault (OR 2.33, 95% CI 1.17-4.61), a previous violent conviction (OR 2.02, 95% CI 1.04-3.87), having received special education (OR 2.76, 95% CI 1.22-6.26) and alcohol abuse (OR 3.55, 95% CI 1.24-10.2). Conclusions: Previously established risk factors including a history of violence and alcohol abuse are replicated in this study. Although low premorbid IQ did not predict violence, a need for special education did. (C) 2003 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper aims to design a collaboration model for a Knowledge Community - SSMEnetUK. The research identifies SSMEnetUK as a socio-technical system and uses the core concepts of Service Science to explore the subject domain. The paper is positioned within the concept of Knowledge Management (KM) and utilising Web 2.0 tools for collaboration. A qualitative case study method was adopted and multiple data sources were used. In achieving that, the degree of co-relation between knowledge management activities and Web 2.0 tools for collaboration in the scenario are pitted against the concept of value propositions offered by both customer/user and service provider. The proposed model provides a better understanding of how Knowledge Management and Web 2.0 tools can enable effective collaboration within SSMEnetUK. This research is relevant to the wider service design and innovation community because it provides a basis for building a service-centric collaboration platform for the benefit of both customer/user and service provider.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Convectively coupled equatorial waves are fundamental components of the interaction between the physics and dynamics of the tropical atmosphere. A new methodology, which isolates individual equatorial wave modes, has been developed and applied to observational data. The methodology assumes that the horizontal structures given by equatorial wave theory can be used to project upper- and lower-tropospheric data onto equatorial wave modes. The dynamical fields are first separated into eastward- and westward-moving components with a specified domain of frequency–zonal wavenumber. Each of the components for each field is then projected onto the different equatorial modes using the y structures of these modes given by the theory. The latitudinal scale yo of the modes is predetermined by data to fit the equatorial trapping in a suitable latitude belt y = ±Y. The extent to which the different dynamical fields are consistent with one another in their depiction of each equatorial wave structure determines the confidence in the reality of that structure. Comparison of the analyzed modes with the eastward- and westward-moving components in the convection field enables the identification of the dynamical structure and nature of convectively coupled equatorial waves. In a case study, the methodology is applied to two independent data sources, ECMWF Reanalysis and satellite-observed window brightness temperature (Tb) data for the summer of 1992. Various convectively coupled equatorial Kelvin, mixed Rossby–gravity, and Rossby waves have been detected. The results indicate a robust consistency between the two independent data sources. Different vertical structures for different wave modes and a significant Doppler shifting effect of the background zonal winds on wave structures are found and discussed. It is found that in addition to low-level convergence, anomalous fluxes induced by strong equatorial zonal winds associated with equatorial waves are important for inducing equatorial convection. There is evidence that equatorial convection associated with Rossby waves leads to a change in structure involving a horizontal structure similar to that of a Kelvin wave moving westward with it. The vertical structure may also be radically changed. The analysis method should make a very powerful diagnostic tool for investigating convectively coupled equatorial waves and the interaction of equatorial dynamics and physics in the real atmosphere. The results from application of the analysis method for a reanalysis dataset should provide a benchmark against which model studies can be compared.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Virtual globe technology holds many exciting possibilities for environmental science. These easy-to-use, intuitive systems provide means for simultaneously visualizing four-dimensional environmental data from many different sources, enabling the generation of new hypotheses and driving greater understanding of the Earth system. Through the use of simple markup languages, scientists can publish and consume data in interoperable formats without the need for technical assistance. In this paper we give, with examples from our own work, a number of scientific uses for virtual globes, demonstrating their particular advantages. We explain how we have used Web Services to connect virtual globes with diverse data sources and enable more sophisticated usage such as data analysis and collaborative visualization. We also discuss the current limitations of the technology, with particular regard to the visualization of subsurface data and vertical sections.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper considers the potential contribution of secondary quantitative analyses of large scale surveys to the investigation of 'other' childhoods. Exploring other childhoods involves investigating the experience of young people who are unequally positioned in relation to multiple, embodied, identity locations, such as (dis)ability, 'class', gender, sexuality, ethnicity and race. Despite some possible advantages of utilising extensive databases, the paper outlines a number of methodological problems with existing surveys which tend to reinforce adultist and broader hierarchical social relations. It is contended that scholars of children's geographies could overcome some of these problematic aspects of secondary data sources by endeavouring to transform the research relations of large scale surveys. Such endeavours would present new theoretical, ethical and methodological complexities, which are briefly considered.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Across Europe, elevated phosphorus (P) concentrations in lowland rivers have made them particularly susceptible to eutrophication. This is compounded in southern and central UK by increasing pressures on water resources, which may be further enhanced by the potential effects of climate change. The EU Water Framework Directive requires an integrated approach to water resources management at the catchment scale and highlights the need for modelling tools that can distinguish relative contributions from multiple nutrient sources and are consistent with the information content of the available data. Two such models are introduced and evaluated within a stochastic framework using daily flow and total phosphorus concentrations recorded in a clay catchment typical of many areas of the lowland UK. Both models disaggregate empirical annual load estimates, derived from land use data, as a function of surface/near surface runoff, generated using a simple conceptual rainfall-runoff model. Estimates of the daily load from agricultural land, together with those from baseflow and point sources, feed into an in-stream routing algorithm. The first model assumes constant concentrations in runoff via surface/near surface pathways and incorporates an additional P store in the river-bed sediments, depleted above a critical discharge, to explicitly simulate resuspension. The second model, which is simpler, simulates P concentrations as a function of surface/near surface runoff, thus emphasising the influence of non-point source loads during flow peaks and mixing of baseflow and point sources during low flows. The temporal consistency of parameter estimates and thus the suitability of each approach is assessed dynamically following a new approach based on Monte-Carlo analysis. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A methodology for using remotely sensed data to both generate and evaluate a hydraulic model of floodplain inundation is presented for a rural case study in the United Kingdom: Upton-upon-Severn. Remotely sensed data have been processed and assembled to provide an excellent test data set for both model construction and validation. In order to assess the usefulness of the data and the issues encountered in their use, two models for floodplain inundation were constructed: one based on an industry standard one-dimensional approach and the other based on a simple two-dimensional approach. The results and their implications for the future use of remotely sensed data for predicting flood inundation are discussed. Key conclusions for the use of remotely sensed data are that care must be taken to integrate different data sources for both model construction and validation and that improvements in ground height data shift the focus in terms of model uncertainties to other sources such as boundary conditions. The differences between the two models are found to be of minor significance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Agri-environment schemes (AESs) have been implemented across EU member states in an attempt to reconcile agricultural production methods with protection of the environment and maintenance of the countryside. To determine the extent to which such policy objectives are being fulfilled, participating countries are obliged to monitor and evaluate the environmental, agricultural and socio-economic impacts of their AESs. However, few evaluations measure precise environmental outcomes and critically, there are no agreed methodologies to evaluate the benefits of particular agri-environmental measures, or to track the environmental consequences of changing agricultural practices. In response to these issues, the Agri-Environmental Footprint project developed a common methodology for assessing the environmental impact of European AES. The Agri-Environmental Footprint Index (AFI) is a farm-level, adaptable methodology that aggregates measurements of agri-environmental indicators based on Multi-Criteria Analysis (MCA) techniques. The method was developed specifically to allow assessment of differences in the environmental performance of farms according to participation in agri-environment schemes. The AFI methodology is constructed so that high values represent good environmental performance. This paper explores the use of the AFI methodology in combination with Farm Business Survey data collected in England for the Farm Accountancy Data Network (FADN), to test whether its use could be extended for the routine surveillance of environmental performance of farming systems using established data sources. Overall, the aim was to measure the environmental impact of three different types of agriculture (arable, lowland livestock and upland livestock) in England and to identify differences in AFI due to participation in agri-environment schemes. However, because farm size, farmer age, level of education and region are also likely to influence the environmental performance of a holding, these factors were also considered. Application of the methodology revealed that only arable holdings participating in agri-environment schemes had a greater environmental performance, although responses differed between regions. Of the other explanatory variables explored, the key factors determining the environmental performance for lowland livestock holdings were farm size, farmer age and level of education. In contrast, the AFI value of upland livestock holdings differed only between regions. The paper demonstrates that the AFI methodology can be used readily with English FADN data and therefore has the potential to be applied more widely to similar data sources routinely collected across the EU-27 in a standardised manner.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the recent years, the area of data mining has been experiencing considerable demand for technologies that extract knowledge from large and complex data sources. There has been substantial commercial interest as well as active research in the area that aim to develop new and improved approaches for extracting information, relationships, and patterns from large datasets. Artificial neural networks (NNs) are popular biologically-inspired intelligent methodologies, whose classification, prediction, and pattern recognition capabilities have been utilized successfully in many areas, including science, engineering, medicine, business, banking, telecommunication, and many other fields. This paper highlights from a data mining perspective the implementation of NN, using supervised and unsupervised learning, for pattern recognition, classification, prediction, and cluster analysis, and focuses the discussion on their usage in bioinformatics and financial data analysis tasks. © 2012 Wiley Periodicals, Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

With the introduction of new observing systems based on asynoptic observations, the analysis problem has changed in character. In the near future we may expect that a considerable part of meteorological observations will be unevenly distributed in four dimensions, i.e. three dimensions in space and one in time. The term analysis, or objective analysis in meteorology, means the process of interpolating observed meteorological observations from unevenly distributed locations to a network of regularly spaced grid points. Necessitated by the requirement of numerical weather prediction models to solve the governing finite difference equations on such a grid lattice, the objective analysis is a three-dimensional (or mostly two-dimensional) interpolation technique. As a consequence of the structure of the conventional synoptic network with separated data-sparse and data-dense areas, four-dimensional analysis has in fact been intensively used for many years. Weather services have thus based their analysis not only on synoptic data at the time of the analysis and climatology, but also on the fields predicted from the previous observation hour and valid at the time of the analysis. The inclusion of the time dimension in objective analysis will be called four-dimensional data assimilation. From one point of view it seems possible to apply the conventional technique on the new data sources by simply reducing the time interval in the analysis-forecasting cycle. This could in fact be justified also for the conventional observations. We have a fairly good coverage of surface observations 8 times a day and several upper air stations are making radiosonde and radiowind observations 4 times a day. If we have a 3-hour step in the analysis-forecasting cycle instead of 12 hours, which is applied most often, we may without any difficulties treat all observations as synoptic. No observation would thus be more than 90 minutes off time and the observations even during strong transient motion would fall within a horizontal mesh of 500 km * 500 km.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Smart healthcare is a complex domain for systems integration due to human and technical factors and heterogeneous data sources involved. As a part of smart city, it is such a complex area where clinical functions require smartness of multi-systems collaborations for effective communications among departments, and radiology is one of the areas highly relies on intelligent information integration and communication. Therefore, it faces many challenges regarding integration and its interoperability such as information collision, heterogeneous data sources, policy obstacles, and procedure mismanagement. The purpose of this study is to conduct an analysis of data, semantic, and pragmatic interoperability of systems integration in radiology department, and to develop a pragmatic interoperability framework for guiding the integration. We select an on-going project at a local hospital for undertaking our case study. The project is to achieve data sharing and interoperability among Radiology Information Systems (RIS), Electronic Patient Record (EPR), and Picture Archiving and Communication Systems (PACS). Qualitative data collection and analysis methods are used. The data sources consisted of documentation including publications and internal working papers, one year of non-participant observations and 37 interviews with radiologists, clinicians, directors of IT services, referring clinicians, radiographers, receptionists and secretary. We identified four primary phases of data analysis process for the case study: requirements and barriers identification, integration approach, interoperability measurements, and knowledge foundations. Each phase is discussed and supported by qualitative data. Through the analysis we also develop a pragmatic interoperability framework that summaries the empirical findings and proposes recommendations for guiding the integration in the radiology context.