73 resultados para movement organisation
Resumo:
White clover (Trifolium repens) is an important pasture legume but is often difficult to sustain in a mixed sward because, among other things, of the damage to roots caused by the soil-dwelling larval stages of S. lepidus. Locating the root nodules on the white clover roots is crucial for the survival of the newly hatched larvae. This paper presents a numerical model to simulate the movement of newly hatched S. lepidus larvae towards the root nodules, guided by a chemical signal released by the nodules. The model is based on the diffusion-chemotaxis equation. Experimental observations showed that the average speed of the larvae remained approximately constant, so the diffusion-chernotaxis model was modified so that the larvae respond only to the gradient direction of the chemical signal but not its magnitude. An individual-based lattice Boltzmann method was used to simulate the movement of individual larvae, and the parameters required for the model were estimated from the measurement of larval movement towards nodules in soil scanned using X-ray microtomography. The model was used to investigate the effects of nodule density, the rate of release of chemical signal, the sensitivity of the larvae to the signal, and the random foraging of the larvae on the movement and subsequent survival of the larvae. The simulations showed that the most significant factors for larval survival were nodule density and the sensitivity of the larvae to the signal. The dependence of larval survival rate on nodule density was well fitted by the Michealis-Menten kinetics. (c) 2005 Elsevier B.V All rights reserved.
Resumo:
Two sites in central England where sewage sludge has been deposited for decades were studied to measure the heavy metal distribution in the soil profiles. The first site (S 1) was a field receiving heavy loads sludge from a nearby wastewater treatment plant, and the second (S2) was a farm applying 'normal' sludge rates of 8 t ha(-1) y(-1) of the same sludge. Soil samples were also taken by a near-by untreated control site. In S I the movement of heavy metals was significant even down to 80 cm depth compared to the control. In S2, the concentrations of lead (Pb) and zinc (Zn) and the organic matter content were higher than the control down to 20 cm, while nickel (Ni) moved significantly down to 80 cm. This underlies. the possibility that the metals bound onto organic surfaces moved along with organic matter down to that depth. The movement of metals in S2 points out the potential risks of applying sewage sludge for a long time.
The mountain of ships. The organisation of the Bronze Age cemetery at Snäckedal, Misterhult, Småland
Resumo:
Bloom-forming and toxin-producing cyanobacteria remain a persistent nuisance across the world. Modelling of cyanobacteria in freshwaters is an important tool for understanding their population dynamics and predicting the location and timing of the bloom events in lakes and rivers. In this article, a new deterministic model is introduced which simulates the growth and movement of cyanobacterial blooms in river systems. The model focuses on the mathematical description of the bloom formation, vertical migration and lateral transport of colonies within river environments by taking into account the four major factors that affect the cyanobacterial bloom formation in freshwaters: light, nutrients, temperature and river flow. The model consists of two sub-models: a vertical migration model with respect to growth of cyanobacteria in relation to light, nutrients and temperature; and a hydraulic model to simulate the horizontal movement of the bloom. This article presents the model algorithms and highlights some important model results. The effects of nutrient limitation, varying illumination and river flow characteristics on cyanobacterial movement are simulated. The results indicate that under high light intensities and in nutrient-rich waters colonies sink further as a result of carbohydrate accumulation in the cells. In turbulent environments, vertical migration is retarded by vertical velocity component generated by turbulent shear stress. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Bloom-forming and toxin-producing cyanobacteria remain a persistent nuisance across the world. Modelling of cyanobacteria in freshwaters is an important tool for understanding their population dynamics and predicting the location and timing of the bloom events in lakes and rivers. A new deterministic-mathematical model was developed, which simulates the growth and movement of cyanobacterial blooms in river systems. The model focuses on the mathematical description of the bloom formation, vertical migration and lateral transport of colonies within river environments by taking into account the major factors that affect the cyanobacterial bloom formation in rivers including, light, nutrients and temperature. A technique called generalised sensitivity analysis was applied to the model to identify the critical parameter uncertainties in the model and investigates the interaction between the chosen parameters of the model. The result of the analysis suggested that 8 out of 12 parameters were significant in obtaining the observed cyanobacterial behaviour in a simulation. It was found that there was a high degree of correlation between the half-saturation rate constants used in the model.
Resumo:
Displacement studies on leaching of potassium (K+) were conducted under unsaturated steady state flow conditions in nine undisturbed soil columns (15.5 cm in diameter and 25 cm long). Pulses of K+ applied to columns of undisturbed soil were leached with distilled water or calcium chloride (CaCl2) at a rate of 18 mm h(-1). The movement of K+ in gypsum treated soil leached with distilled water was at a similar rate to that of the untreated soil leached with 15 mM CaCl2. The Ca2+ concentrations in the leachates were about 15 mM, the expected values for the dissolution of the gypsum. When applied K+ was displaced with the distilled water, K+ was retained in the top 10-12.5 cm depth of soil. In the undisturbed soil cores there is possibility of preferential flow and lack of K+ sorption. The application of gypsum and CaCl2 in the reclamation of sodic soils would be expected to leach K+ from soils. It can also be concluded that the use of sources of water for irrigation which have a high Ca2+ concentration can also lead to leaching of K+ from soil. Average effluent concentration of K+ during leaching period was 30.2 and 28.6 mg l(-1) for the gypsum and CaCl2 treated soils, respectively. These concentrations are greater than the recommended guideline of the World Health Organisation (12 mg K+ l(-1)).
Resumo:
1. In contrast to above-ground insects, comparatively little is known about the behaviour of subterranean insects, due largely to the difficulty of studying them in situ. 2. The movement of newly hatched (neonate) clover root weevil (Sitona lepidus L. Coleoptera: Curculinidae) larvae was studied non-invasively using recently developed high resolution X-ray microtomography. 3. The movement and final position of S. lepidus larvae in the soil was reliably established using X-ray microtomography, when compared with larval positions that were determined by destructively sectioning the soil column. 4. Newly hatched S. lepidus larvae were seen to attack the root rhizobial nodules of their host plant, white clover (Trifolium repens L.). Sitona lepidus larvae travelled between 9 and 27 mm in 9 h at a mean speed of 1.8 mm h(-1). 5. Sitona lepidus larvae did not move through the soil in a linear manner, but changed trajectory in both the lateral and vertical planes.
Resumo:
Structure is an important physical feature of the soil that is associated with water movement, the soil atmosphere, microorganism activity and nutrient uptake. A soil without any obvious organisation of its components is known as apedal and this state can have marked effects on several soil processes. Accurate maps of topsoil and subsoil structure are desirable for a wide range of models that aim to predict erosion, solute transport, or flow of water through the soil. Also such maps would be useful to precision farmers when deciding how to apply nutrients and pesticides in a site-specific way, and to target subsoiling and soil structure stabilization procedures. Typically, soil structure is inferred from bulk density or penetrometer resistance measurements and more recently from soil resistivity and conductivity surveys. To measure the former is both time-consuming and costly, whereas observations made by the latter methods can be made automatically and swiftly using a vehicle-mounted penetrometer or resistivity and conductivity sensors. The results of each of these methods, however, are affected by other soil properties, in particular moisture content at the time of sampling, texture, and the presence of stones. Traditional methods of observing soil structure identify the type of ped and its degree of development. Methods of ranking such observations from good to poor for different soil textures have been developed. Indicator variograms can be computed for each category or rank of structure and these can be summed to give the sum of indicator variograms (SIV). Observations of the topsoil and subsoil structure were made at four field sites where the soil had developed on different parent materials. The observations were ranked by four methods and indicator and the sum of indicator variograms were computed and modelled for each method of ranking. The individual indicators were then kriged with the parameters of the appropriate indicator variogram model to map the probability of encountering soil with the structure represented by that indicator. The model parameters of the SIVs for each ranking system were used with the data to krige the soil structure classes, and the results are compared with those for the individual indicators. The relations between maps of soil structure and selected wavebands from aerial photographs are examined as basis for planning surveys of soil structure. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Cryoturbated Upper Chalk is a dichotomous porous medium wherein the intra-fragment porosity provides water storage and the inter-fragment porosity provides potential pathways for relatively rapid flow near saturation. Chloride tracer movement through 43 cm long and 45 cm diameter undisturbed chalk columns was studied at water application rates of 0.3, 1.0, and 1.5 cm h(-1). Microscale heterogeneity in effluent was recorded using a grid collection system consisting of 98 funnel-shaped cells each 3.5 cm in diameter. The total porosity of the columns was 0.47 +/- 0.02 m(3) m(-3), approximately 13% of pores were >15 mu m diameter, and the saturated hydraulic conductivity was 12.66 +/- 1.31 m day(-1). Although the column remained unsaturated during the leaching even at all application rates, proportionate flow through macropores increased as the application rate decreased. The number of dry cells (with 0 ml of effluent) increased as application rate decreased. Half of the leachate was collected from 15, 19 and 22 cells at 0.3, 1.0, 1.5 cm h(-1) application rates respectively. Similar breakthrough curves (BTCs) were obtained at all three application rates when plotted as a function of cumulative drainage, but they were distinctly different when plotted as a function of time. The BTCs indicate that the columns have similar drainage requirement irrespective of application rates, as the rise to the maxima (C/C-o) is almost similar. However, the time required to achieve that leaching requirement varies with application rates, and residence time was less in the case of a higher application rate. A two-region convection-dispersion model was used to describe the BTCs and fitted well (r(2) = 0.97-0-99). There was a linear relationship between dispersion coefficient and pore water velocity (correlation coefficient r = 0.95). The results demonstrate the microscale heterogeneity of hydrodynamic properties in the Upper Chalk. Copyright (C) 2007 John Wiley & Sons, Ltd.
Resumo:
White clover (Trifolium repens) is an important pasture legume but is often difficult to sustain in a mixed sward because, among other things, of the damage to roots caused by the soil-dwelling larval stages of S. lepidus. Locating the root nodules on the white clover roots is crucial for the survival of the newly hatched larvae. This paper presents a numerical model to simulate the movement of newly hatched S. lepidus larvae towards the root nodules, guided by a chemical signal released by the nodules. The model is based on the diffusion-chemotaxis equation. Experimental observations showed that the average speed of the larvae remained approximately constant, so the diffusion-chernotaxis model was modified so that the larvae respond only to the gradient direction of the chemical signal but not its magnitude. An individual-based lattice Boltzmann method was used to simulate the movement of individual larvae, and the parameters required for the model were estimated from the measurement of larval movement towards nodules in soil scanned using X-ray microtomography. The model was used to investigate the effects of nodule density, the rate of release of chemical signal, the sensitivity of the larvae to the signal, and the random foraging of the larvae on the movement and subsequent survival of the larvae. The simulations showed that the most significant factors for larval survival were nodule density and the sensitivity of the larvae to the signal. The dependence of larval survival rate on nodule density was well fitted by the Michealis-Menten kinetics. (c) 2005 Elsevier B.V All rights reserved.