37 resultados para matrix assisted laser desorption ionization time of flight mass spectrometry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: Our objective was to test the performance of CA125 in classifying serum samples from a cohort of malignant and benign ovarian cancers and age-matched healthy controls and to assess whether combining information from matrix-assisted laser desorption/ionization (MALDI) time-of-flight profiling could improve diagnostic performance. Materials and Methods: Serum samples from women with ovarian neoplasms and healthy volunteers were subjected to CA125 assay and MALDI time-of-flight mass spectrometry (MS) profiling. Models were built from training data sets using discriminatory MALDI MS peaks in combination with CA125 values and tested their ability to classify blinded test samples. These were compared with models using CA125 threshold levels from 193 patients with ovarian cancer, 290 with benign neoplasm, and 2236 postmenopausal healthy controls. Results: Using a CA125 cutoff of 30 U/mL, an overall sensitivity of 94.8% (96.6% specificity) was obtained when comparing malignancies versus healthy postmenopausal controls, whereas a cutoff of 65 U/mL provided a sensitivity of 83.9% (99.6% specificity). High classification accuracies were obtained for early-stage cancers (93.5% sensitivity). Reasons for high accuracies include recruitment bias, restriction to postmenopausal women, and inclusion of only primary invasive epithelial ovarian cancer cases. The combination of MS profiling information with CA125 did not significantly improve the specificity/accuracy compared with classifications on the basis of CA125 alone. Conclusions: We report unexpectedly good performance of serum CA125 using threshold classification in discriminating healthy controls and women with benign masses from those with invasive ovarian cancer. This highlights the dependence of diagnostic tests on the characteristics of the study population and the crucial need for authors to provide sufficient relevant details to allow comparison. Our study also shows that MS profiling information adds little to diagnostic accuracy. This finding is in contrast with other reports and shows the limitations of serum MS profiling for biomarker discovery and as a diagnostic tool

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A homologous series of macrocyclic oligoamides has been prepared in high yield by reaction of isophthaloyl chloride with m-phenylenediamine under pseudo-high-dilution conditions. The products were characterized by infrared and H-1 NMR spectroscopies, matrix assisted laser desorption-ionization time-of-flight mass spectrometry, and gel permeation chromatography (GPC). A series of linear oligomers was prepared for comparison. The macrocycles ranged in size from the cyclic trimer up to at least the cyclic nonamer (90 ring atoms). The same homologous series of macrocyclic oligomers was prepared in high yield by the cyclodepolymerization of poly(m-phenylene isophthalamide) (Nomex). Cyclodepolymerization was best achieved by treating a 1% w/v solution of the polymer in dimethyl sulfoxide containing calcium chloride or lithium chloride with 3-4 mol % of sodium hydride or the sodium salt of benzanilide at 150 degreesC for 70 h. Treatment of a concentrated solution of the macrocyclic oligomers (25% w/v) with 4 mol % of sodium hydride or the sodium salt of benzanilide in a solution of lithium chloride in dimethyl sulfoxide at 170 degreesC for 6 h resulted in efficient entropically driven ring-opening polymerizations to give poly(m-phenylene isophthalamide), characterized by infrared and H-1 NMR spectroscopies and by GPC. The molecular weights obtained were comparable with those of the commercial polymer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three triblock copolymers of ethylene oxide and phenyl glycidyl ether, type E(m)G(n)E(m), where G = OCH2-CH(CH2OC6H5) and E = OCH2CH2, were synthesized and characterized by gel-permeation chromatography, matrix-assisted laser desorption ionization time-of-flight mass spectrometry, and NMR spectroscopy. Their association properties in aqueous solution were investigated by surface tensiometry and light scattering, yielding values of the critical micelle concentration (cmc), the hydrodynamic radius, and the association number. Gel boundaries in concentrated micellar solution were investigated by tube inversion, and for one copolymer, the temperature and frequency dependence of the dynamic moduli served to confirm and extend the phase diagram and to highlight gel properties. Small-angle X-ray scattering was used to investigate gel structure. The overall aim of the work was to define a block copolymer micellar system with better solubilization capacity for poorly soluble aromatic drugs than had been achieved so far by use of block copoly(oxyalkylene)s. Judged by the solubilization of griseofulvin in aqueous solutions of the E(m)G(n)E(m) copolymers, this aim was achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has become evident that the mystery of life will not be deciphered just by decoding its blueprint, the genetic code. In the life and biomedical sciences, research efforts are now shifting from pure gene analysis to the analysis of all biomolecules involved in the machinery of life. One area of these postgenomic research fields is proteomics. Although proteomics, which basically encompasses the analysis of proteins, is not a new concept, it is far from being a research field that can rely on routine and large-scale analyses. At the time the term proteomics was coined, a gold-rush mentality was created, promising vast and quick riches (i.e., solutions to the immensely complex questions of life and disease). Predictably, the reality has been quite different. The complexity of proteomes and the wide variations in the abundances and chemical properties of their constituents has rendered the use of systematic analytical approaches only partially successful, and biologically meaningful results have been slow to arrive. However, to learn more about how cells and, hence, life works, it is essential to understand the proteins and their complex interactions in their native environment. This is why proteomics will be an important part of the biomedical sciences for the foreseeable future. Therefore, any advances in providing the tools that make protein analysis a more routine and large-scale business, ideally using automated and rapid analytical procedures, are highly sought after. This review will provide some basics, thoughts and ideas on the exploitation of matrix-assisted laser desorption/ ionization in biological mass spectrometry - one of the most commonly used analytical tools in proteomics - for high-throughput analyses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has become evident that the mystery of life will not be deciphered just by decoding its blueprint, the genetic code. In the life and biomedical sciences, research efforts are now shifting from pure gene analysis to the analysis of all biomolecules involved in the machinery of life. One area of these postgenomic research fields is proteomics. Although proteomics, which basically encompasses the analysis of proteins, is not a new concept, it is far from being a research field that can rely on routine and large-scale analyses. At the time the term proteomics was coined, a gold-rush mentality was created, promising vast and quick riches (i.e., solutions to the immensely complex questions of life and disease). Predictably, the reality has been quite different. The complexity of proteomes and the wide variations in the abundances and chemical properties of their constituents has rendered the use of systematic analytical approaches only partially successful, and biologically meaningful results have been slow to arrive. However, to learn more about how cells and, hence, life works, it is essential to understand the proteins and their complex interactions in their native environment. This is why proteomics will be an important part of the biomedical sciences for the foreseeable future. Therefore, any advances in providing the tools that make protein analysis a more routine and large-scale business, ideally using automated and rapid analytical procedures, are highly sought after. This review will provide some basics, thoughts and ideas on the exploitation of matrix-assisted laser desorption/ionization in biological mass spectrometry - one of the most commonly used analytical tools in proteomics - for high-throughput analyses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have combined several key sample preparation steps for the use of a liquid matrix system to provide high analytical sensitivity in automated ultraviolet -- matrix-assisted laser desorption/ionisation -- mass spectrometry (UV-MALDI-MS). This new sample preparation protocol employs a matrix-mixture which is based on the glycerol matrix-mixture described by Sze et al. The low-femtomole sensitivity that is achievable with this new preparation protocol enables proteomic analysis of protein digests comparable to solid-state matrix systems. For automated data acquisition and analysis, the MALDI performance of this liquid matrix surpasses the conventional solid-state MALDI matrices. Besides the inherent general advantages of liquid samples for automated sample preparation and data acquisition the use of the presented liquid matrix significantly reduces the extent of unspecific ion signals in peptide mass fingerprints compared to typically used solid matrices, such as 2,5-dihydroxybenzoic acid (DHB) or alpha-cyano-hydroxycinnamic acid (CHCA). In particular, matrix and low-mass ion signals and ion signals resulting from cation adduct formation are dramatically reduced. Consequently, the confidence level of protein identification by peptide mass mapping of in-solution and in-gel digests is generally higher.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have combined several key sample preparation steps for the use of a liquid matrix system to provide high analytical sensitivity in automated ultraviolet - matrix-assisted laser desorption/ ionisation - mass spectrometry (UV-MALDI-MS). This new sample preparation protocol employs a matrix-mixture which is based on the glycerol matrix-mixture described by Sze et al. U. Am. Soc. Mass Spectrom. 1998, 9, 166-174). The low-ferntomole sensitivity that is achievable with this new preparation protocol enables proteomic analysis of protein digests comparable to solid-state matrix systems. For automated data acquisition and analysis, the MALDI performance of this liquid matrix surpasses the conventional solid-state MALDI matrices. Besides the inherent general advantages of liquid samples for automated sample preparation and data acquisition the use of the presented liquid matrix significantly reduces the extent of unspecific ion signals in peptide mass fingerprints compared to typically used solid matrices, such as 2,5-dihydrox-ybenzoic acid (DHB) or alpha-cyano-hydroxycinnamic acid (CHCA). In particular, matrix and lowmass ion signals and ion signals resulting from cation adduct formation are dramatically reduced. Consequently, the confidence level of protein identification by peptide mass mapping of in-solution and in-gel digests is generally higher.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gentiooligosaccharides and alternansucrase gentiobiose acceptor products were fractionated by their degree of polymerization (DP) on a Bio-Gel P2 column. Fractions were characterized by matrix-assisted laser desorption ionization time-of-flight mass spectroscopy, and incubated with human faecal bacteria under anaerobic conditions at 37 degrees C. The growth of predominant gut bacteria on the oligosaccharides was evaluated by fluorescence in situ hybridization and a prebiotic index (PI) was calculated. Lower DP gentiooligosaccharides (DP2-3) showed the highest selectivity (PI of 4.89 and 3.40, respectively), whereas DP4-5 alternansucrase gentiobiose acceptor products generated the greatest values (PI of 5.87). The production of short-chain fatty acids was also determined during the time course of the reactions. The mixture of DP6-10 alternansucrase gentiobiose acceptor products generated the highest levels of butyric acid but the lowest levels of lactic acid. Generally, for similar molecular weights, alternansucrase gentiobiose acceptor products gave higher PI values than gentiooligosaccharides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In plant tissues the extracellular environment or apoplast, incorporating the cell wall, is a highly dynamic compartment with a role in many important plant processes including defence, development, signalling and assimilate partitioning. Soluble apoplast proteins from Arabidopsis thaliana, Triticum aestivum and Oryza sativa were separated by two-dimensional electrophoresis. The molecular weights and isoelectric points for the dominant proteins were established prior to excision, sequencing and identification by matrix-assisted laser-desorption ionisation time of flight mass spectrometry (MALDI - TOF MS). From the selected spots, 23 proteins from O. sativa and 25 proteins from A. thaliana were sequenced, of which nine identifications were made in O. sativa (39%) and 14 in A. thaliana (56%). This analysis revealed that: (i) patterns of proteins revealed by two-dimensional electrophoresis were different for each species indicating that speciation could occur at the level of the apoplast, (ii) of the proteins characterised many belonged to diverse families reflecting the multiple functions of the apoplast and (iii), a large number of the apoplast proteins could not be identified indicating that the majority of extracellular proteins are yet to be assigned. The principal proteins identified in the aqueous matrix of the apoplast were involved in defence, i.e. germin-like proteins or glucanases, and cell expansion, i.e. β-D-glucan glucohydrolases. This study has demonstrated that proteomic analysis can be used to resolve the apoplastic protein complement and to identify adaptive changes induced by environmental effectors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An in vitro study was conducted to investigate the effect of tannins on the extent and rate of gas and methane production, using an automated pressure evaluation system (APES). In this study three condensed tannins (CT; quebracho, grape seed and green tea tannins) and four hydrolysable tannins (HT; tara, valonea, myrabolan and chestnut tannins) were evaluated, with lucerne as a control substrate. CT and HT were characterised by matrix assisted laser desorption ionisation-time of flight mass spectrometry (MALDI-TOF-MS). Tannins were added to the substrate at an effective concentration of 100 g/kg either with or without polyethylene glycol (PEG6000), and incubated for 72 h in pooled, buffered rumen liquid from four lactating dairy cows. After inoculation, fermentation bottles were immediately connected to the APES to measure total cumulative gas production (GP). During the incubation, 11 gas samples were collected from each bottle at 0, 1, 4, 7, 11, 15, 23, 30, 46, 52 and 72 h of incubation and analysed for methane. A modified Michaelis-Menten model was fitted to the methane concentration patterns and model estimates were used to calculate the total cumulative methane production (GPCH4). GP and GPCH4 curves were fitted using a modified monophasic Michaelis-Menten model. Addition of quebracho reduced GP (P=0.002), whilst the other tannins did not affect GP. Addition of PEG increased GP for quebracho (P=0.003), valonea (P=0.058) and grape seed tannins (P=0.071), suggesting that these tannins either inhibited or tended to inhibit fermentation. Addition of quebracho and grape seed tannins also reduced (P≤0.012) the maximum rate of gas production, indicating that microbial activity was affected. Quebracho, valonea, myrabolan and grape seed decreased (P≤0.003) GPCH4 and the maximum rate (0.001≤ P≤ 0.102) of CH4 production. Addition of chestnut, green tea and tara tannins did not affect total gas nor methane production. Valonea and myrabolan tannins have most promise for reducing methane production as they had only a minor impact on gas production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A structure-function study was carried out to increase knowledge of how glycosidic linkages and molecular weights of carbohydrates contribute toward the selectivity of fermentation by gut bacteria. Oligosaccharides with maltose as the common carbohydrate source were used. Potentially prebiotic alternansucrase and dextransucrase maltose acceptor products were synthesized and separated into different molecular weights using a Bio-gel P2 column. These fractions were characterized by matrix-assisted laser desorption/ionization time-of-flight. Nonprebiotic maltooligosaccharides with degrees of polymerization (DP) from three to seven were commercially obtained for comparison. Growth selectivity of fecal bacteria on these oligosaccharides was studied using an anaerobic in vitro fermentation method. In general, carbohydrates of DP3 showed the highest selectivity towards bifidobacteria; however, oligosaccharides with a higher molecular weight (DP6-DP7) also resulted in a selective fermentation. Oligosaccharides with DPs above seven did not promote the growth of "beneficial" bacteria. The knowledge of how specific structures modify the gut microflora could help to find new prebiotic oligosaccharides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method is described for the analysis of deuterated and undeuterated alpha-tocopherol in blood components using liquid chromatography coupled to an orthogonal acceleration time-of-flight (TOF) mass spectrometer. Optimal ionisation conditions for undeuterated (d0) and tri- and hexadeuterated (d3 or d6) alpha-tocopherol standards were found with negative ion mode electrospray ionisation. Each species produced an isotopically resolved single ion of exact mass. Calibration curves of pure standards were linear in the range tested (0-1.5 muM, 0-15 pmol injected). For quantification of d0 and d6 in blood components following a standard solvent extraction, a stable-isotope-labelled internal standard (d3-alpha-tocopherol) was employed. To counter matrix ion suppression effects, standard response curves were generated following identical solvent extraction procedures to those of the samples. Within-day and between-day precision were determined for quantification of d0- and d6-labelled alpha-tocopherol in each blood component and both averaged 3-10%. Accuracy was assessed by comparison with a standard high-performance liquid chromatography (HPLC) method, achieving good correlation (r(2) = 0.94), and by spiking with known concentrations of alpha-tocopherol (98% accuracy). Limits of detection and quantification were determined to be 5 and 50 fmol injected, respectively. The assay was used to measure the appearance and disappearance of deuterium-labelled alpha-tocopherol in human blood components following deuterium-labelled (d6) RRR-alpha-tocopheryl acetate ingestion. The new LC/TOFMS method was found to be sensitive, required small sample volumes, was reproducible and robust, and was capable of high throughput when large numbers of samples were generated. Copyright (C) 2003 John Wiley Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With its highly fluctuating ion production matrix-assisted laser desorption/ionization (MALDI) poses many practical challenges for its application in mass spectrometry. Instrument tuning and quantitative ion abundance measurements using ion signal alone depend on a stable ion beam. Liquid MALDI matrices have been shown to be a promising alternative to the commonly used solid matrices. Their application in areas where a stable ion current is essential has been discussed but only limited data have been provided to demonstrate their practical use and advantages in the formation of stable MALDI ion beams. In this article we present experimental data showing high MALDI ion beam stability over more than two orders of magnitude at high analytical sensitivity (low femtomole amount prepared) for quantitative peptide abundance measurements and instrument tuning in a MALDI Q-TOF mass spectrometer. Samples were deposited on an inexpensive conductive hydrophobic surface and shrunk to droplets <10 nL in size. By using a sample droplet <10 nL it was possible to acquire data from a single irradiated spot for roughly 10,000 shots with little variation in ion signal intensity at a laser repetition rate of 5-20 Hz.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glucosinolates are multi-functional plant secondary metabolites which play a vital role in plant defence and are, as dietary compounds, important to human health and livestock well-being. Knowledge of the tissue-specific regulation of their biosynthesis and accumulation is essential for plant breeding programs. Here, we report that in Arabidopsis thaliana, glucosinolates are accumulated differentially in specific cells of reproductive organs. Using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI), distribution patterns of three selected compounds, 4-methylsulfinylbutyl (glucoraphanin), indol-3-ylmethyl (glucobrassicin), and 4-benzoyloxybutyl glucosinolates, were mapped in the tissues of whole flower buds, sepals and siliques. The results show that tissue localization patterns of aliphatic glucosinolate glucoraphanin and 4-benzoyloxybutyl glucosinolate were similar, but indole glucosinolate glucobrassicin had different localisation, indicating a possible difference in function. The high resolution images obtained by a complementary approach, cryo-SEM Energy Dispersive X-ray analysis (cryo-SEM-EDX), confirmed increased concentration of sulphur in areas with elevated amounts of glucosinolates, and allowed identifying the cell types implicated in accumulation of glucosinolates. High concentration of sulphur was found in S-cells adjacent to the phloem in pedicels and siliques, indicating the presence of glucosinolates. Moreover, both MALDI MSI and cryo-SEM-EDX analyses indicated accumulation of glucosinolates in cells on the outer surface of the sepals, suggesting that a layer of glucosinolate-accumulating epidermal cells protects the whole of the developing flower, in addition to the S-cells, which protect the phloem. This research demonstrates the high potential of MALDI MSI for understanding the cell-specific compartmentation of plant metabolites and its regulation.