71 resultados para low rate speech coding
Resumo:
This letter proposes the subspace-based blind adaptive channel estimation algorithm for dual-rate quasi-synchronous DS/CDMA systems, which can operate at the low-rate (LR) or high-rate (HR) mode. Simulation results show that the proposed blind adaptive algorithm at the LR mode has a better performance than that at the HR mode, with the cost of an increasing computational complexity.
Resumo:
This paper proposes a subspace based blind adaptive channel estimation algorithm for dual-rate DS-CDMA systems, which can operate at the low-rate (LR) or high-rate (HR) mode. Simulation results show that the proposed blind adaptive algorithm at the LR mode has a better performance than that at the HR mode, with the cost of an increased computational complexity.
Resumo:
Olive oil is a key component of the traditional Mediterranean diet; a diet that may explain the low rate of cardiovascular disease (CVD) in Southern European. (Extra virgin) Olive oil is a good source of monounsaturated fatty acids (MUFA) and phenolic compounds, both of which have been investigated for their effects on plasma lipids and lipoproteins, measures of oxidation and factors related to thrombosis. This issue aims to summarise the current understanding of the effects of such dietary components on the haemostatic system and subsequent risk of CVD. To date, evidence suggests that diets rich in MUFA and thus in olive oil attenuate the thrombotic response via a reduction in platelet aggregation and in postprandial FVII levels. Thrombosis is a key event in causing heart attacks and strokes, which if modulated by diet could pose a cost-effective way of reducing CVD incidence in populations that adhere to MUFA/olive oil-rich diets long-term.
Resumo:
The existing dual-rate blind linear detectors, which operate at either the low-rate (LR) or the high-rate (HR) mode, are not strictly blind at the HR mode and lack theoretical analysis. This paper proposes the subspace-based LR and HR blind linear detectors, i.e., bad decorrelating detectors (BDD) and blind MMSE detectors (BMMSED), for synchronous DS/CDMA systems. To detect an LR data bit at the HR mode, an effective weighting strategy is proposed. The theoretical analyses on the performance of the proposed detectors are carried out. It has been proved that the bit-error-rate of the LR-BDD is superior to that of the HR-BDD and the near-far resistance of the LR blind linear detectors outperforms that of its HR counterparts. The extension to asynchronous systems is also described. Simulation results show that the adaptive dual-rate BMMSED outperform the corresponding non-blind dual-rate decorrelators proposed by Saquib, Yates and Mandayam (see Wireless Personal Communications, vol. 9, p.197-216, 1998).
Resumo:
Climate models provide compelling evidence that if greenhouse gas emissions continue at present rates, then key global temperature thresholds (such as the European Union limit of two degrees of warming since pre-industrial times) are very likely to be crossed in the next few decades. However, there is relatively little attention paid to whether, should a dangerous temperature level be exceeded, it is feasible for the global temperature to then return to safer levels in a usefully short time. We focus on the timescales needed to reduce atmospheric greenhouse gases and associated temperatures back below potentially dangerous thresholds, using a state-of-the-art general circulation model. This analysis is extended with a simple climate model to provide uncertainty bounds. We find that even for very large reductions in emissions, temperature reduction is likely to occur at a low rate. Policy-makers need to consider such very long recovery timescales implicit in the Earth system when formulating future emission pathways that have the potential to 'overshoot' particular atmospheric concentrations of greenhouse gases and, more importantly, related temperature levels that might be considered dangerous.
Resumo:
Data augmentation is a powerful technique for estimating models with latent or missing data, but applications in agricultural economics have thus far been few. This paper showcases the technique in an application to data on milk market participation in the Ethiopian highlands. There, a key impediment to economic development is an apparently low rate of market participation. Consequently, economic interest centers on the “locations” of nonparticipants in relation to the market and their “reservation values” across covariates. These quantities are of policy interest because they provide measures of the additional inputs necessary in order for nonparticipants to enter the market. One quantity of primary interest is the minimum amount of surplus milk (the “minimum efficient scale of operations”) that the household must acquire before market participation becomes feasible. We estimate this quantity through routine application of data augmentation and Gibbs sampling applied to a random-censored Tobit regression. Incorporating random censoring affects markedly the marketable-surplus requirements of the household, but only slightly the covariates requirements estimates and, generally, leads to more plausible policy estimates than the estimates obtained from the zero-censored formulation
Resumo:
Debate over the late Quaternary megafaunal extinctions has focussed on whether human colonisation or climatic changes were more important drivers of extinction, with few extinctions being unambiguously attributable to either. Most analyses have been geographically or taxonomically restricted and the few quantitative global analyses have been limited by coarse temporal resolution or overly simplified climate reconstructions or proxies. We present a global analysis of the causes of these extinctions which uses high-resolution climate reconstructions and explicitly investigates the sensitivity of our results to uncertainty in the palaeological record. Our results show that human colonisation was the dominant driver of megafaunal extinction across the world but that climatic factors were also important. We identify the geographic regions where future research is likely to have the most impact, with our models reliably predicting extinctions across most of the world, with the notable exception of mainland Asia where we fail to explain the apparently low rate of extinction found in in the fossil record. Our results are highly robust to uncertainties in the palaeological record, and our main conclusions are unlikely to change qualitatively following minor improvements or changes in the dates of extinctions and human colonisation.
Resumo:
Cool materials are characterized by having a high solar reflectance r – which is able to reduce heat gains during daytime - and a high thermal emissivity ε that enables them to dissipate the heat absorbed throughout the day during night. Despite the concept of cool roofs - i.e. the application of cool materials to roof surfaces - is well known in US since 1990s, many studies focused on their performance in both residential and commercial sectors under various climatic conditions for US countries, while only a few case studies are analyzed in EU countries. The present work aims at analyzing the thermal benefits due to their application to existing office buildings located in EU countries. Indeed, due to their weight in the existing buildings stock, as well as the very low rate of new buildings construction, the retrofit of office buildings is a topic of great concern worldwide. After an in-depth characterization of the existing buildings stock in the EU, the book gives an insight into roof energy balance due to different technological solutions, showing in which cases and to what extent cool roofs are preferable. A detailed description of the physical properties of cool materials and their availability on the market provides a solid background for the parametric analysis carried out by means of detailed numerical models that aims at evaluating cool roofs performance for various climates and office buildings configurations. With the help of dynamic simulations, the thermal behavior of representative office buildings of the existing EU buildings stock is assessed in terms of thermal comfort and energy needs for air conditioning. The results, which consider several variations of building features that may affect the resulting energy balance, show how cool roofs are an effective strategy for reducing overheating occurrences and thus improving thermal comfort in any climate. On the other hand, potential heating penalties due to a reduction in the incoming heat fluxes through the roof are taken into account, as well as the aging process of cool materials. Finally, an economic analysis of the best performing models shows the boundaries for their economic convenience.
Resumo:
This paper discusses the design, implementation and synthesis of an FFT module that has been specifically optimized for use in the OFDM based Multiband UWB system, although the work is generally applicable to many other OFDM based receiver systems. Previous work has detailed the requirements for the receiver FFT module within the Multiband UWB ODFM based system and this paper draws on those requirements coupled with modern digital architecture principles and low power design criteria to converge on our optimized solution. The FFT design obtained in this paper is also applicable for implementation of the transmitter IFFT module therefore only needing one FFT module for half-duplex operation. The results from this paper enable the baseband designers of the 200Mbit/sec variant of Multiband UWB systems (and indeed other OFDM based receivers) using System-on-Chip (SoC), FPGA and ASIC technology to create cost effective and low power solutions biased toward the competitive consumer electronics market.
A low clock frequency FFT core implementation for multiband full-rate ultra-wideband (UWB) receivers
Resumo:
This paper discusses the design, implementation and synthesis of an FFT module that has been specifically optimized for use in the OFDM based Multiband UWB system, although the work is generally applicable to many other OFDM based receiver systems. Previous work has detailed the requirements for the receiver FFT module within the Multiband UWB ODFM based system and this paper draws on those requirements coupled with modern digital architecture principles and low power design criteria to converge on our optimized solution particularly aimed at a low-clock rate implementation. The FFT design obtained in this paper is also applicable for implementation of the transmitter IFFT module therefore only needing one FFT module in the device for half-duplex operation. The results from this paper enable the baseband designers of the 200Mbit/sec variant of Multiband UWB systems (and indeed other OFDM based receivers) using System-on-Chip (SoC), FPGA and ASIC technology to create cost effective and low power consumer electronics product solutions biased toward the very competitive market.
Resumo:
The general packet radio service (GPRS) has been developed to allow packet data to be transported efficiently over an existing circuit-switched radio network, such as GSM. The main application of GPRS are in transporting Internet protocol (IP) datagrams from web servers (for telemetry or for mobile Internet browsers). Four GPRS baseband coding schemes are defined to offer a trade-off in requested data rates versus propagation channel conditions. However, data rates in the order of > 100 kbits/s are only achievable if the simplest coding scheme is used (CS-4) which offers little error detection and correction (EDC) (requiring excellent SNR) and the receiver hardware is capable of full duplex which is not currently available in the consumer market. A simple EDC scheme to improve the GPRS block error rate (BLER) performance is presented, particularly for CS-4, however gains in other coding schemes are seen. For every GPRS radio block that is corrected by the EDC scheme, the block does not need to be retransmitted releasing bandwidth in the channel and improving the user's application data rate. As GPRS requires intensive processing in the baseband, a viable field programmable gate array (FPGA) solution is presented in this paper.
Resumo:
This paper proposes a novel interference cancellation algorithm for the two-path successive relay system using network coding. The two-path successive relay scheme was proposed recently to achieve full date rate transmission with half-duplex relays. Due to the simultaneous data transmission at the relay and source nodes, the two-path relay suffers from the so-called inter-relay interference (IRI) which may significantly degrade the system performance. In this paper, we propose to use the network coding to remove the IRI such that the interference is first encoded with the network coding at the relay nodes and later removed at the destination. The network coding has low complexity and can well suppress the IRI. Numerical simulations show that the proposed algorithm has better performance than existing approaches.
Resumo:
Low-power medium access control (MAC) protocols used for communication of energy constraint wireless embedded devices do not cope well with situations where transmission channels are highly erroneous. Existing MAC protocols discard corrupted messages which lead to costly retransmissions. To improve transmission performance, it is possible to include an error correction scheme and transmit/receive diversity. It is possible to add redundant information to transmitted packets in order to recover data from corrupted packets. It is also possible to make use of transmit/receive diversity via multiple antennas to improve error resiliency of transmissions. Both schemes may be used in conjunction to further improve the performance. In this study, the authors show how an error correction scheme and transmit/receive diversity can be integrated in low-power MAC protocols. Furthermore, the authors investigate the achievable performance gains of both methods. This is important as both methods have associated costs (processing requirements; additional antennas and power) and for a given communication situation it must be decided which methods should be employed. The authors’ results show that, in many practical situations, error control coding outperforms transmission diversity; however, if very high reliability is required, it is useful to employ both schemes together.
Resumo:
We present predictions of the signatures of magnetosheath particle precipitation (in the regions classified as open low-latitude boundary layer, cusp, mantle and polar cap) for periods when the interplanetary magnetic field has a southward component. These are made using the “pulsating cusp” model of the effects of time-varying magnetic reconnection at the dayside magnetopause. Predictions are made for both low-altitude satellites in the topside ionosphere and for midaltitude spacecraft in the magnetosphere. Low-altitude cusp signatures, which show a continuous ion dispersion signature, reveal "quasi-steady reconnection" (one limit of the pulsating cusp model), which persists for a period of at least 10 min. We estimate that “quasi-steady” in this context corresponds to fluctuations in the reconnection rate of a factor of 2 or less. The other limit of the pulsating cusp model explains the instantaneous jumps in the precipitating ion spectrum that have been observed at low altitudes. Such jumps are produced by isolated pulses of reconnection: that is, they are separated by intervals when the reconnection rate is zero. These also generate convecting patches on the magnetopause in which the field lines thread the boundary via a rotational discontinuity separated by more extensive regions of tangential discontinuity. Predictions of the corresponding ion precipitation signatures seen by midaltitude spacecraft are presented. We resolve the apparent contradiction between estimates of the width of the injection region from midaltitude data and the concept of continuous entry of solar wind plasma along open field lines. In addition, we reevaluate the use of pitch angle-energy dispersion to estimate the injection distance.
Resumo:
The entropy budget is calculated of the coupled atmosphere–ocean general circulation model HadCM3. Estimates of the different entropy sources and sinks of the climate system are obtained directly from the diabatic heating terms, and an approximate estimate of the planetary entropy production is also provided. The rate of material entropy production of the climate system is found to be ∼50 mW m−2 K−1, a value intermediate in the range 30–70 mW m−2 K−1 previously reported from different models. The largest part of this is due to sensible and latent heat transport (∼38 mW m−2 K−1). Another 13 mW m−2 K−1 is due to dissipation of kinetic energy in the atmosphere by friction and Reynolds stresses. Numerical entropy production in the atmosphere dynamical core is found to be about 0.7 mW m−2 K−1. The material entropy production within the ocean due to turbulent mixing is ∼1 mW m−2 K−1, a very small contribution to the material entropy production of the climate system. The rate of change of entropy of the model climate system is about 1 mW m−2 K−1 or less, which is comparable with the typical size of the fluctuations of the entropy sources due to interannual variability, and a more accurate closure of the budget than achieved by previous analyses. Results are similar for FAMOUS, which has a lower spatial resolution but similar formulation to HadCM3, while more substantial differences are found with respect to other models, suggesting that the formulation of the model has an important influence on the climate entropy budget. Since this is the first diagnosis of the entropy budget in a climate model of the type and complexity used for projection of twenty-first century climate change, it would be valuable if similar analyses were carried out for other such models.