22 resultados para liver carcinogenesis
Resumo:
The objective of this work was to construct a dynamic model of hepatic amino acid metabolism in the lactating dairy cow that could be parameterized using net flow data from in vivo experiments. The model considers 22 amino acids, ammonia, urea, and 13 energetic metabolites, and was parameterized using a steady-state balance model and two in vivo, net flow experiments conducted with mid-lactation dairy cows. Extracellular flows were derived directly from the observed data. An optimization routine was used to derive nine intracellular flows. The resulting dynamic model was found to be stable across a range of inputs suggesting that it can be perturbed and applied to other physiological states. Although nitrogen was generally in balance, leucine was in slight deficit compared to predicted needs for export protein synthesis, suggesting that an alternative source of leucine (e.g. peptides) was utilized. Simulations of varying glucagon concentrations indicated that an additional 5 mol/d of glucose could be synthesized at the reference substrate concentrations and blood flows. The increased glucose production was supported by increased removal from blood of lactate, glutamate, aspartate, alanine, asparagine, and glutamine. As glucose Output increased, ketone body and acetate release increased while CO2 release declined. The pattern of amino acids appearing in hepatic vein blood was affected by changes in amino acid concentration in portal vein blood, portal blood flow rate and glucagon concentration, with methionine and phenylalanine being the most affected of essential amino acids. Experimental evidence is insufficient to determine whether essential amino acids are affected by varying gluconeogenic demands. (C) 2004 Published by Elsevier Ltd.
Net nutrient absorption and liver metabolism in lactating dairy cows fed supplemental dietary biotin
Resumo:
The effect of feeding supplemental biotin on net absorption and metabolism of nutrients by the portal-drained viscera (PDV; the gut, pancreas, spleen and associated fat) and liver of lactating dairy cows was measured. Three cows in early to mid-lactation catheterised for measurements of net nutrient absorption and metabolism by the PDV and liver were fed a total-mixed ration with or without supplemental biotin at 20 mg/day using a switch-back design (ABA v. BAB) with three 2-week periods. There were no effects of feeding biotin on dry matter intake (22.2 kg/day), milk yield (29.5 kg/day) or milk composition. There was also no effect of feeding biotin on net release of glucose by the liver, net liver removal of glucose precursors (propionate, alanine, lactate) or net liver release of p-hydroxybutyrate. Feeding biotin increased net PDV release of ammonia. Reasons for the response are not certain, but a numerical increase in net PDV release of acetate suggests that rumen or hindgut fermentation was altered. Results of the present study do not support the hypothesis that supplemental biotin increases liver glucose production in lactating dairy cows.
Resumo:
After parturition, the somatotropic axis of the dairy cow is uncoupled, partly because of reduced concentration of liver-specific GH receptor (GHR) 1A. Estradiol-17 beta (E-2) concentrations increase at parturition and E-2 upregulates suppressors of cytokine signaling-2 (SOCS-2) mRNA expression, potentially inhibiting GH signaling. Therefore, we hypothesized that SOCS-2 mRNA is upregulated after parturition. Multiparous Holstein cows (n = 18) were dried off 45 d before expected parturition and fed diets to meet nutrient requirements at ad libitum or limited dry matter intake during the dry period. All cows were fed the same diet ad libitum from calving until 4 wk after parturition. Blood samples were collected weekly and more frequently near parturition. Liver biopsies obtained at -21, -7, 2, and 28 d relative to parturition were assessed for SOCS-2 and GHR 1A mRNA by quantitative real-time reverse-transcription PCR. The relative amount of SOCS-2 mRNA increased after parturition with both treatments and was greater on d 2 for cows limit-fed during the dry period compared with cows fed at ad libitum dry matter intake. Plasma E2 concentrations increased on d -13, -5 and 1 relative to parturition and the increases were greater in limit-fed cows. Plasma GH concentration was greater for limit-fed cows and increased after parturition in all cows. The amount of GHR 1A mRNA did not differ between diets but decreased on d 2. In addition to reduced GHR 1A, increased SOCS-2 mRNA after parturition, perhaps because of increased E-2, may further uncouple GH signaling in the liver of the transition dairy cow.
Resumo:
It has previously been shown that experimental infections of the parasitic trematode Schistosoma mansoni, the adult worms of which reside in the blood stream of the mammalian host, significantly reduced atherogenesis in apolipoprotein E gene knockout (apoE(-/-)) mice. These effects occurred in tandem with a lowering of serum total cholesterol levels in both apoE(-/-) and random-bred laboratory mice and a beneficial increase in the proportion of HDL to LDL cholesterol. To better understand how the parasitic infections induce these effects we have here investigated the involvement of adult worms and their eggs on lipids in the host. Our results indicate that the serum cholesterol-lowering effect is mediated by factors released from S. mansoni eggs, while the presence of adult worms seemed to have had little or no effect. It was also observed that high levels of lipids, particularly triacylglycerols and cholesteryl esters, present in the uninfected livers of both random-bred and apoE(-/-) mice fed a high-fat diet were not present in livers of the schistosome-infected mice. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
We hypothesized that the hepatotoxicity that develops after the induction of oxidative stress (induced by d-galactosamine [GalN]) can be ameliorated by alpha-tocopherol (ATC) and the soy isoflavone daidzein. To test this, we ranked and assigned male Wistar rats into 6 groups, which involved pretreatment (ATC or daidzein) for 1 hour followed by treatment (GalN) for 23 hours. Histopathologic analysis showed that GalN administration induced marked necrosis (P < .001), steatosis (P < .001), both lobular and portal inflammations (P < .001), overall histopathologic score (P < .001), and activation of caspase-3 in the liver (P < .001). Immunohistochemical staining of malondialdehyde-protein adducts, a measure of oxidative stress, was increased in response to GalN (P < .001). Paradoxically, there were increases in total (P < .05) and cytosolic superoxide dismutase (P < .001) activities after GalN administration, indicative of an up-regulation of antioxidant defenses. The concentration of total protein (P < .001), albumin (P < .01), and globulin fractions (P < .001) in the plasma, as well as the activity of aspartate aminotransferase (P < .001), was significantly perturbed after GalN treatment, reflective of overall acute hepatic injury. Administration of daidzein showed a significant amelioration of the Ga1N-induced increase in malondialdehyde-protein adducts (P < .01) and cytosolic superoxide dismutase activities (P < .01) in the liver. However, all other variables were not significantly altered in response to daidzein. In response to ATC pretreatment, the total histopathologic score (P < .05), degree of necrosis (P < .05), and both lobular (P < .05) and portal (P = .05) inflammations were significantly ameliorated. To conclude, both daidzein and ATC protect the liver against oxidative damage possibly via different pathways.
Resumo:
The ultrastructure of a new microsporidian species Microgemmia vivaresi n. sp. causing liver cell xenoma formation in sea scorpions, Taurulus bubalis, is described. Stages of merogony, sporogony, and sporogenesis are mixed in the central cytoplasm of developing xenomas. All stages have unpaired nuclei. Uninucleate and multinucleate meronts lie within vacuoles formed from host endoplasmic reticulum and divide by binary or multiple fission. Sporonts, no longer in vacuoles, deposit plaques of surface coat on the plasma membrane that cause the surface to pucker. Division occurs at the Puckered stage into sporoblast mother cells, on which plaques join up to complete the surface coat. A final binary fission gives rise to sporoblasts. A dense globule, thought to be involved in polar tube synthesis, is gradually dispersed during spore maturation. Spores are broadly ovoid, have a large posterior vacuole, and measure 3.6 mu m x 2.1 pint (fresh). The polar tube has a short wide anterior section that constricts abruptly, then runs posteriad to coil about eight times around the posterior vacuole with granular contents. The polaroplast has up to 40 membranes arranged in pairs mostly attached to the wide region of the polar tube and directed posteriorty around a cytoplasm of a coarsely granular appearance. The species is placed alongside the type species Microgemmia hepaticus Ralphs and Matthews 1986 within the family Tetramicridae, which is transferred from the class Dihaplophasea to the class Haplophasea, as there is no evidence for the occurrence of a diplokaryotic phase.
Resumo:
Studies in cell cultures and animal models provide evidence that probiotics can beneficially influence various stages in development of colon cancer including tumor initiation, promotion and metastasis. For example, oral administration of Lactobacillus and Bifidobacterium strains can prevent genotoxic damage to the colonic epithelium (considered to be an early stage of the carcinogenic process). Administration to rats of probiotics reduced the incidence of carcinogen-induced pre-cancerous lesions (aberrant crypt foci) in the colon. Furthermore a combination of Bifidobacterium longum and inulin (a prebiotic) was more effective than either treatment alone. In this latter study, the dietary treatments were given after exposure to the carcinogen, which suggests that the protective effects were being exerted at the promotional phase of carcinogenesis. L. acidophilus feeding has been shown to decrease the incidence of colon tumors in rats challenged with a carcinogen and B. longum reduced the incidence of carcinogeninduced colon, liver and mammary tumors. There is limited evidence from epidemiological studies for protective effects of products containing probiotics in humans, but a number of recent dietary intervention studies in healthy subjects and in polyp and cancer patients have yielded promising results on the basis of biomarkers of cancer risk and grade of colorectal tumors.
Resumo:
Colorectal cancer is one of the most common cancers in Western countries. The World Health Organisation identifies diet as a critical risk factor in the development and progression of this disease and the protective role of high levels of fruit and vegetable consumption. Several studies have shown that apples contain several phenolic compounds that are potent anti-oxidants in humans. However, little is known about other beneficial properties of apple phenolics in cancer. We have used the HT29, HT115 and CaCo-2 cell lines as in vitro models to examine the effect of apple phenolics (0.01–0.1% apple extract) on key stages of colorectal carcinogenesis, namely; DNA damage (Comet assay), colonic barrier function (TER assay), cell cycle progression (DNA content assay) and invasion (Matrigel assay). Our results indicate that a crude extract of apple phenolics can protect against DNA damage, improve barrier function and inhibit invasion (p < 0.05). The anti-invasive effects of the extract were enhanced with twenty-four hour pretreatment of cells (p < 0.05). We have shown that a crude apple extract from waste, rich in phenolic compounds, beneficially influences key stages of carcinogenesis in colon cells in vitro.
Resumo:
Regular consumption of green tea polyphenols (GTP) is thought to reduce the risk of cardiovascular disease (CVD) but has also been associated with liver toxicity. The present trial aimed to assess the safety and potential CVD health beneficial effects of daily GTP consumption. We conducted a placebo-controlled parallel study to evaluate the chronic effects of GTP on liver function and CVD risk biomarkers in healthy men. Volunteers (treatment: n = 17, BMI 26.7 +/- 3.3 kg/m(2), age 41 +/- 9 y; placebo, n = 16, BMI 25.4 +/- 3.3 kg/m(2), age 40 +/- 10 y) consumed for 3 wk 6 capsules per day (2 before each principal meal) containing green tea extracts (equivalent to 714 mg/d GTP) or placebo. At the beginning and end of the intervention period, we collected blood samples from fasting subjects and measured vascular tone using Laser Doppler lontophoresis. Biomarkers of liver function and CVD risk (including blood pressure, plasma lipids, and asymmetric dimethylarginine) were unaffected by GTP consumption. After treatment, the ratio of total:HDL cholesterol was significantly reduced in participants taking GTP capsules compared with baseline. Endothelial-dependent and -independent vascular reactivity did not significantly differ between treatments. In conclusion, the present data suggests that the daily consumption of high doses of GTP by healthy men for 3 wk is safe but without effects on CVD risk biomarkers other than the total:HDL cholesterol ratio. J. Nutr. 139: 58-62, 2009.
Resumo:
Resistant starch type 2 (RS2) and type 3 (RS3) containing preparations were digested using a batch (a) and a dynamic in vitro model (b). Furthermore, in vivo obtained indigestible fractions from ileostomy patients were used (c). Subsequently these samples were fermented with human feces with a batch and a dynamic in vitro method. The fermentation supernatants were used to treat CAC02 cells. Cytotoxicity, anti-genotoxicity against hydrogen peroxide (comet assay) and the effect on barrier function measured by trans-epithelial electrical resistance were determine. Dynamically fermented samples led to high cytotoxic activity, probably due to additional compounds added during in vitro fermentation. As a consequence only batch fermented samples were investigated further. Batch fermentation of RS resulted in an anti-genotoxic activity ranging from 9-30% decrease in DNA damage for all the samples, except for RS2-b. It is assumed that the changes in RS2 structures due to dynamic digestion resulted in a different fermentation profile not leading to any anti-genotoxic effect. Additionally, in vitro batch fermentation of RS caused an improvement in integrity across the intestinal barrier by approximately 22% for all the samples. We have demonstrated that batch in vitro fermentation of RS2 and RS3 preparations differently pre-digested are capable of inhibiting the initiation and promotion stage in colon carcinogenesis in vitro.
Resumo:
Quantitative control of aroma generation during the Maillard reaction presents great scientific and industrial interest. Although there have been many studies conducted in simplified model systems, the results are difficult to apply to complex food systems, where the presence of other components can have a significant impact. In this work, an aqueous extract of defatted beef liver was chosen as a simplified food matrix for studying the kinetics of the Mallard reaction. Aliquots of the extract were heated under different time and temperature conditions and analyzed for sugars, amino acids, and methylbutanals, which are important Maillard-derived aroma compounds formed in cooked meat. Multiresponse kinetic modeling, based on a simplified mechanistic pathway, gave a good fit with the experimental data, but only when additional steps were introduced to take into account the interactions of glucose and glucose-derived intermediates with protein and other amino compounds. This emphasizes the significant role of the food matrix in controlling the Maillard reaction.
An isotope dilution model for partitioning phenylalanine uptake by the liver of lactating dairy cows
Resumo:
An isotope dilution model for partitioning phenylalanine uptake by the liver of the lactating dairy cow was constructed and solved in the steady state. If assumptions are made, model solution permits calculation of the rate of phenylalanine uptake from portal vein and hepatic arterial blood supply, phenylalanine release into the hepatic vein, phenylalanine oxidation and synthesis, and degradation of hepatic constitutive and export proteins. The model requires the measurement of plasma fow rate through the liver in combination with phenylalanine concentrations and plateau isotopic enrichments in arterial, portal and hepatic plasma during a constant infusion of [1-13C]phenylalanine tracer. The model can be applied to other amino acids with similar metabolic fates and will provide a means for assessing the impact of hepatic metabolism on amino acid availability to peripheral tissues. This is of particular importance for the dairy cow when considering the requirements for milk protein synthesis and the negative environmental impact of excessive nitrogen excretion.
Resumo:
Phthalates are industrial additives widely used as plasticizers. In addition to deleterious effects on male genital development, population studies have documented correlations between phthalates exposure and impacts on reproductive tract development and on the metabolic syndrome in male adults. In this work we investigated potential mechanisms underlying the impact of DEHP on adult mouse liver in vivo. A parallel analysis of hepatic transcript and metabolic profiles from adult mice exposed to varying DEHP doses was performed. Hepatic genes modulated by DEHP are predominantly PPARalpha targets. However, the induction of prototypic cytochrome P450 genes strongly supports the activation of additional NR pathways, including Constitutive Androstane Receptor (CAR). Integration of transcriptomic and metabonomic profiles revealed a correlation between the impacts of DEHP on genes and metabolites related to heme synthesis and to the Rev-erbalpha pathway that senses endogenous heme level. We further confirmed the combined impact of DEHP on the hepatic expression of Alas1, a critical enzyme in heme synthesis and on the expression of Rev-erbalpha target genes involved in the cellular clock and in energy metabolism. This work shows that DEHP interferes with hepatic CAR and Rev-erbalpha pathways which are both involved in the control of metabolism. The identification of these new hepatic pathways targeted by DEHP could contribute to metabolic and endocrine disruption associated with phthalate exposure. Gene expression profiles performed on microdissected testis territories displayed a differential responsiveness to DEHP. Altogether, this suggests that impacts of DEHP on adult organs, including testis, could be documented and deserve further investigations.