22 resultados para knowledge control
Resumo:
Negative correlations between task performance in dynamic control tasks and verbalizable knowledge, as assessed by a post-task questionnaire, have been interpreted as dissociations that indicate two antagonistic modes of learning, one being “explicit”, the other “implicit”. This paper views the control tasks as finite-state automata and offers an alternative interpretation of these negative correlations. It is argued that “good controllers” observe fewer different state transitions and, consequently, can answer fewer post-task questions about system transitions than can “bad controllers”. Two experiments demonstrate the validity of the argument by showing the predicted negative relationship between control performance and the number of explored state transitions, and the predicted positive relationship between the number of explored state transitions and questionnaire scores. However, the experiments also elucidate important boundary conditions for the critical effects. We discuss the implications of these findings, and of other problems arising from the process control paradigm, for conclusions about implicit versus explicit learning processes.
Resumo:
Knowledge-elicitation is a common technique used to produce rules about the operation of a plant from the knowledge that is available from human expertise. Similarly, data-mining is becoming a popular technique to extract rules from the data available from the operation of a plant. In the work reported here knowledge was required to enable the supervisory control of an aluminium hot strip mill by the determination of mill set-points. A method was developed to fuse knowledge-elicitation and data-mining to incorporate the best aspects of each technique, whilst avoiding known problems. Utilisation of the knowledge was through an expert system, which determined schedules of set-points and provided information to human operators. The results show that the method proposed in this paper was effective in producing rules for the on-line control of a complex industrial process.
Resumo:
This paper describes the design, implementation and testing of an intelligent knowledge-based supervisory control (IKBSC) system for a hot rolling mill process. A novel architecture is used to integrate an expert system with an existing supervisory control system and a new optimization methodology for scheduling the soaking pits in which the material is heated prior to rolling. The resulting IKBSC system was applied to an aluminium hot rolling mill process to improve the shape quality of low-gauge plate and to optimise the use of the soaking pits to reduce energy consumption. The results from the trials demonstrate the advantages to be gained from the IKBSC system that integrates knowledge contained within data, plant and human resources with existing model-based systems. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The rising share of intangibles in economies worldwide highlights the crucial role of knowledge-intensive and creative industries in current and future wealth generation. The recognition of this trend has led to intense competition in these industries. At the micro-level, firms from both advanced and emerging economies are globally dispersing their value chains to control costs and leverage capabilities. The geography of innovation is the outcome of a dynamic process whereby firms from emerging economies strive to catch-up with advanced economy competitors, creating strong pressures for continued innovation. However, two distinct strategies can be discerned with regard to the control of the value chain. A vertical integration strategy emphasizes taking advantage of ‘linkage economies’ whereby controlling multiple value chain activities enhances the efficiency and effectiveness of each one of them. In contrast, a specialization strategy focuses on identifying and controlling the creative heart of the value chain, while outsourcing all other activities. The global mobile handset industry is used as the template to illustrate the theory.
Resumo:
CBPP is an important transboundary disease in sub-Saharan Africa whose control is urgent. Participatory data collection involving 52 focus group discussions in 37 village clusters and key informant interviews, a cross-sectional study involving 232 households and a post-vaccination follow up involving 203 households was carried out in 2006-2007 in Narok South district of Kenya. This was to investigate knowledge, attitudes, perceptions and practices (KAPP) associated with control of CBPP as well as the adverse post-vaccination reactions in animals in order to advice the control policy. The community perceived trans-boundary CBPP threat to their cattle. They had traditional disease coping mechanisms and were conversant with CBPP prevention and control with 49.8% (95%CI: 42.8-56.7%) giving priority to CBPP control. However, 12.9% (95%CI: 9.0-18.1%) of pastoralists had no knowledge of any prevention method and 10.0% (95%CI: 6.5-14.7%) would not know what to do or would do nothing in the event of an outbreak. Although 43.5% (95%CI: 37.1-50.2%) of pastoralists were treating CBPP cases with antimicrobials, 62.5% (95%CI: 52.1-71.7%) of them doubted the effectiveness of the treatments. Pastoralists perceived vaccination to be the solution to CBPP but vaccination was irregular due to unavailability of the vaccine. Vaccination was mainly to control outbreaks rather than preventive and exhibited adverse post-vaccination reactions among 70.4% (95%CI: 63.6-76.5%) of herds and 3.8% (95%CI: 3.5-4.2%) of animals. Consequently, nearly 25.2% (95%CI: 18.5-33.2%) of pastoralists may resist subsequent vaccinations against CBPP. Pastoralists preferred CBPP vaccination at certain times of the year and that it is combined with other vaccinations. In conclusion, pastoralists were not fully aware of the preventive measures and interventions and post-vaccination reactions may discourage subsequent CBPP vaccinations. Consequently there is need for monitoring and management of post vaccination reactions and awareness creation on CBPP prevention and interventions and their merits and demerits. CBPP vaccine was largely unavailable to the pastoralists and the preference of the pastoralists was for vaccination at specified times and vaccine combinations which makes it necessary to avail the vaccine in conformity with the pastoralists preferences. In addition, planning vaccinations should involve pastoralists and neighbouring countries. As the results cannot be generalized, further studies on CBPP control methods and their effectiveness are recommended.
Resumo:
Annual losses of cocoa in Ghana to mirids are significant. Therefore, accurate timing of insecticide application is critical to enhance yields. However, cocoa farmers often lack information on the expected mirid population for each season to enable them to optimise pesticide use. This study assessed farmers’ knowledge and perceptions of mirid control and their willingness to use forecasting systems informing them of expected mirid peaks and time of application of pesticides. A total of 280 farmers were interviewed in the Eastern and Ashanti regions of Ghana with a structured open and closed ended questionnaire. Most farmers (87%) considered mirids as the most important insect pest on cocoa with 47% of them attributing 30-40% annual crop loss to mirid damage. There was wide variation in the timing of insecticide application as a result of farmers using different sources of information to guide the start of application. The majority of farmers (56%) do not have access to information on the type, frequency and timing of insecticides to use. However, respondents who are members of farmer groups had better access to such information. Extension officers were the preferred channel for information transfer to farmers with 72% of farmers preferring them to other available methods of communication. Almost all the respondents (99%) saw the need for a comprehensive forecasting system to help farmers manage cocoa mirids. The importance of accurate timing for mirid control based on forecasted information to farmer groups and extension officers was discussed.
Resumo:
We developed three different knowledge-dissemination methods for educating Tanzanian smallholder farmers about mastitis in their dairy cattle. The effectiveness of these methods (and their combinations) was evaluated and quantified using a randomised controlled trial and multilevel statistical modelling. To our knowledge, this is the first study that has used such techniques to evaluate the effectiveness of different knowledge-dissemination interventions for adult learning in developing countries. Five different combinations of knowledge-dissemination method were compared: 'diagrammatic handout' ('HO'), 'village meeting' ('VM'), 'village meeting and video' ('VM + V), 'village meeting and diagrammatic handout' ('VM + HO') and 'village meeting, video and diagrammatic handout' ('VM + V + HO'). Smallholder dairy farmers were exposed to only one of these interventions, and the effectiveness of each was compared to a control ('C') group, who received no intervention. The mastitis knowledge of each farmer (n = 256) was evaluated by questionnaire both pre- and post-dissemination. Generalised linear mixed models were used to evaluate the effectiveness of the different interventions. The outcome variable considered was the probability of volunteering correct responses to mastitis questions post-dissemination, with 'village' and 'farmer' considered as random effects in the model. Results showed that all five interventions, 'HO' (odds ratio (OR) = 3.50, 95% confidence intervals (CI) = 3.10, 3.96), 'VM + V + HO' (OR = 3.34, 95% CI = 2.94, 3.78), 'VM + HO, (OR=3.28, 95% CI=2.90, 3.71), WM+V (OR=3.22, 95% CI=2.84, 3.64) and 'VM' (OR = 2.61, 95% CI = 2.31, 2.95), were significantly (p < 0.0001) more effective at disseminating mastitis knowledge than no intervention. In addition, the 'VM' method was less effective at disseminating mastitis knowledge than other interventions. Combinations of methods showed no advantage over the diagrammatic handout alone. Other explanatory variables with significant positive associations on mastitis knowledge included education to secondary school level or higher, and having previously learned about mastitis by reading pamphlets or attendance at an animal-health course. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Knowledge-elicitation is a common technique used to produce rules about the operation of a plant from the knowledge that is available from human expertise. Similarly, data-mining is becoming a popular technique to extract rules from the data available from the operation of a plant. In the work reported here knowledge was required to enable the supervisory control of an aluminium hot strip mill by the determination of mill set-points. A method was developed to fuse knowledge-elicitation and data-mining to incorporate the best aspects of each technique, whilst avoiding known problems. Utilisation of the knowledge was through an expert system, which determined schedules of set-points and provided information to human operators. The results show that the method proposed in this paper was effective in producing rules for the on-line control of a complex industrial process. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
A survey of the knowledge, attitudes and practices (KAP) of 100 rice farmers and 50 coconut farmers was conducted in the coastal lowland agro-ecosystems of the Sierra Madre Biodiversity Corridor, Luzon, Philippines to identify current rodent management practices and to understand the extent of rat damage and the attitudes of farmers to community actions for rodent management. Pests were most commonly listed as one of the three most important rice and coconut production constraints. Other major crop production constraints were typhoons and insufficient water. Farmers consider rats to be the major pest of coconut and of rice during the wet season rice crop, with average yield losses of 3.0% and 13.2%, respectively. Rice and coconut farmers practised a wide range of rodent management techniques. These included scrub clearance, hunting and trapping. Of the 42 rice farmers and 3 coconut farmers that applied rodenticides to control rodents, all used the acute rodenticide, zinc phosphide. However, only ten rice farmers (23.8%) applied rodenticides prior to the booting stage and only seven farmers (15.6%) conducted pre-baiting before applying zinc phosphide. The majority of farmers belonged to farmer organisations and believed that rat control can only be done by farmers working together. However, during the last cropping season, less than a third of rice farmers (31.2%) applied rodent management as a group. In order to reduce the impact of rodents on the farmers of the coastal lowlands of the Sierra Madre Biodiversity Corridor, integrated management strategies need to be developed that specifically target the pest rodents in a sustainable manner, and community actions for rodent management should be promoted.
Resumo:
A major infrastructure project is used to investigate the role of digital objects in the coordination of engineering design work. From a practice-based perspective, research emphasizes objects as important in enabling cooperative knowledge work and knowledge sharing. The term ‘boundary object’ has become used in the analysis of mutual and reciprocal knowledge sharing around physical and digital objects. The aim is to extend this work by analysing the introduction of an extranet into the public–private partnership project used to construct a new motorway. Multiple categories of digital objects are mobilized in coordination across heterogeneous, cross-organizational groups. The main findings are that digital objects provide mechanisms for accountability and control, as well as for mutual and reciprocal knowledge sharing; and that different types of objects are nested, forming a digital infrastructure for project delivery. Reconceptualizing boundary objects as a digital infrastructure for delivery has practical implications for management practices on large projects and for the use of digital tools, such as building information models, in construction. It provides a starting point for future research into the changing nature of digitally enabled coordination in project-based work.
Resumo:
Self-organizing neural networks have been implemented in a wide range of application areas such as speech processing, image processing, optimization and robotics. Recent variations to the basic model proposed by the authors enable it to order state space using a subset of the input vector and to apply a local adaptation procedure that does not rely on a predefined test duration limit. Both these variations have been incorporated into a new feature map architecture that forms an integral part of an Hybrid Learning System (HLS) based on a genetic-based classifier system. Problems are represented within HLS as objects characterized by environmental features. Objects controlled by the system have preset targets set against a subset of their features. The system's objective is to achieve these targets by evolving a behavioural repertoire that efficiently explores and exploits the problem environment. Feature maps encode two types of knowledge within HLS — long-term memory traces of useful regularities within the environment and the classifier performance data calibrated against an object's feature states and targets. Self-organization of these networks constitutes non-genetic-based (experience-driven) learning within HLS. This paper presents a description of the HLS architecture and an analysis of the modified feature map implementing associative memory. Initial results are presented that demonstrate the behaviour of the system on a simple control task.
Resumo:
The use of data reconciliation techniques can considerably reduce the inaccuracy of process data due to measurement errors. This in turn results in improved control system performance and process knowledge. Dynamic data reconciliation techniques are applied to a model-based predictive control scheme. It is shown through simulations on a chemical reactor system that the overall performance of the model-based predictive controller is enhanced considerably when data reconciliation is applied. The dynamic data reconciliation techniques used include a combined strategy for the simultaneous identification of outliers and systematic bias.