37 resultados para information management


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A whole life-cycle information management vision is proposed, the organizational requirements for the realization of the scenario is investigated. Preliminary interviews with construction professionals are reported. Discontinuities at information transfer throughout life-cycle of built environments are resulting from lack of coordination and multiple data collection/storage practices. A more coherent history of these activities can improve the work practices of various teams by augmenting decision making processes and creating organizational learning opportunities. Therefore, there is a need for unifying these fragmented bits of data to create a meaningful, semantically rich and standardized information repository for built environment. The proposed vision utilizes embedded technologies and distributed building information models. Two diverse construction project types (large one-off design, small repetitive design) are investigated for the applicability of the vision. A functional prototype software/hardware system for demonstrating the practical use of this vision is developed and discussed. Plans for case-studies for validating the proposed model at a large PFI hospital and housing association projects are discussed.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A range of physiological parameters (canopy light transmission, canopy shape, leaf size, flowering and flushing intensity) were measured from the International Clone Trial, typically over the course of two years. Data were collected from six locations, these being: Brazil, Ecuador, Trinidad, Venezuela, Côte d’Ivoire and Ghana. Canopy shape varied significantly between clones, although it showed little variation between locations. Genotypic variation in leaf size was differentially affected by the growth location; such differences appeared to underlie a genotype by environment interaction in relation to canopy light transmission. Flushing data were recorded at monthly intervals over the course of a year. Within each location, a significant interaction was observed between genotype and time of year, suggesting that some genotypes respond to a greater extent than others to environmental stimuli. A similar interaction was observed for flowering data, where significant correlations were found between flowering intensity and temperature in Brazil and flowering intensity and rainfall in Côte d’Ivoire. The results demonstrate the need for local evaluation of cocoa clones and also suggest that the management practices for particular planting material may need to be fine-tuned to the location in which they are cultivated.

Relevância:

70.00% 70.00%

Publicador:

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The management of information in engineering organisations is facing a particular challenge in the ever-increasing volume of information. It has been recognised that an effective methodology is required to evaluate information in order to avoid information overload and to retain the right information for reuse. By using, as a starting point, a number of the current tools and techniques which attempt to obtain ‘the value’ of information, it is proposed that an assessment or filter mechanism for information is needed to be developed. This paper addresses this issue firstly by briefly reviewing the information overload problem, the definition of value, and related research work on the value of information in various areas. Then a “characteristic” based framework of information evaluation is introduced using the key characteristics identified from related work as an example. A Bayesian Network diagram method is introduced to the framework to build the linkage between the characteristics and information value in order to quantitatively calculate the quality and value of information. The training and verification process for the model is then described using 60 real engineering documents as a sample. The model gives a reasonable accurate result and the differences between the model calculation and training judgements are summarised as the potential causes are discussed. Finally, several further issues including the challenge of the framework and the implementations of this evaluation assessment method are raised.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The study of information requirements for e-business systems reveals that the level of detail, granularity, format of presentation, and a broad range of information types are required for the applications. The provision of relevant information affects how e-business systems can efficiently support the business goals and processes. This paper presents an approach for determining information requirements for e-business systems (DIRES) which will allow the user to describe the core business processes, whose specification maps onto a business activity space. It further aids a configuration of information requirements into an information space. A case study of a logistics company in China demonstrates the use of DIRES techniques and assesses the validity of the research.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the emerging digital economy, the management of information in aerospace and construction organisations is facing a particular challenge due to the ever-increasing volume of information and the extensive use of information and communication technologies (ICTs). This paper addresses the problems of information overload and the value of information in both industries by providing some cross-disciplinary insights. In particular it identifies major issues and challenges in the current information evaluation practice in these two industries. Interviews were conducted to get a spectrum of industrial perspectives (director/strategic, project management and ICT/document management) on these issues in particular to information storage and retrieval strategies and the contrasting approaches to knowledge and information management of personalisation and codification. Industry feedback was collected by a follow-up workshop to strengthen the findings of the research. An information-handling agenda is outlined for the development of a future Information Evaluation Methodology (IEM) which could facilitate the practice of the codification of high-value information in order to support through-life knowledge and information management (K&IM) practice.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

There are a number of challenges associated with managing knowledge and information in construction organizations delivering major capital assets. These include the ever-increasing volumes of information, losing people because of retirement or competitors, the continuously changing nature of information, lack of methods on eliciting useful knowledge, development of new information technologies and changes in management and innovation practices. Existing tools and methodologies for valuing intangible assets in fields such as engineering, project management and financial, accounting, do not address fully the issues associated with the valuation of information and knowledge. Information is rarely recorded in a way that a document can be valued, when either produced or subsequently retrieved and re-used. In addition there is a wealth of tacit personal knowledge which, if codified into documentary information, may prove to be very valuable to operators of the finished asset or future designers. This paper addresses the problem of information overload and identifies the differences between data, information and knowledge. An exploratory study was conducted with a leading construction consultant examining three perspectives (business, project management and document management) by structured interviews and specifically how to value information in practical terms. Major challenges in information management are identified. An through-life Information Evaluation methodology (IEM) is presented to reduce information overload and to make the information more valuable in the future.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The United Nation Intergovernmental Panel on Climate Change (IPCC) makes it clear that climate change is due to human activities and it recognises buildings as a distinct sector among the seven analysed in its 2007 Fourth Assessment Report. Global concerns have escalated regarding carbon emissions and sustainability in the built environment. The built environment is a human-made setting to accommodate human activities, including building and transport, which covers an interdisciplinary field addressing design, construction, operation and management. Specifically, Sustainable Buildings are expected to achieve high performance throughout the life-cycle of siting, design, construction, operation, maintenance and demolition, in the following areas: • energy and resource efficiency; • cost effectiveness; • minimisation of emissions that negatively impact global warming, indoor air quality and acid rain; • minimisation of waste discharges; and • maximisation of fulfilling the requirements of occupants’ health and wellbeing. Professionals in the built environment sector, for example, urban planners, architects, building scientists, engineers, facilities managers, performance assessors and policy makers, will play a significant role in delivering a sustainable built environment. Delivering a sustainable built environment needs an integrated approach and so it is essential for built environment professionals to have interdisciplinary knowledge in building design and management . Building and urban designers need to have a good understanding of the planning, design and management of the buildings in terms of low carbon and energy efficiency. There are a limited number of traditional engineers who know how to design environmental systems (services engineer) in great detail. Yet there is a very large market for technologists with multi-disciplinary skills who are able to identify the need for, envision and manage the deployment of a wide range of sustainable technologies, both passive (architectural) and active (engineering system),, and select the appropriate approach. Employers seek applicants with skills in analysis, decision-making/assessment, computer simulation and project implementation. An integrated approach is expected in practice, which encourages built environment professionals to think ‘out of the box’ and learn to analyse real problems using the most relevant approach, irrespective of discipline. The Design and Management of Sustainable Built Environment book aims to produce readers able to apply fundamental scientific research to solve real-world problems in the general area of sustainability in the built environment. The book contains twenty chapters covering climate change and sustainability, urban design and assessment (planning, travel systems, urban environment), urban management (drainage and waste), buildings (indoor environment, architectural design and renewable energy), simulation techniques (energy and airflow), management (end-user behaviour, facilities and information), assessment (materials and tools), procurement, and cases studies ( BRE Science Park). Chapters one and two present general global issues of climate change and sustainability in the built environment. Chapter one illustrates that applying the concepts of sustainability to the urban environment (buildings, infrastructure, transport) raises some key issues for tackling climate change, resource depletion and energy supply. Buildings, and the way we operate them, play a vital role in tackling global greenhouse gas emissions. Holistic thinking and an integrated approach in delivering a sustainable built environment is highlighted. Chapter two demonstrates the important role that buildings (their services and appliances) and building energy policies play in this area. Substantial investment is required to implement such policies, much of which will earn a good return. Chapters three and four discuss urban planning and transport. Chapter three stresses the importance of using modelling techniques at the early stage for strategic master-planning of a new development and a retrofit programme. A general framework for sustainable urban-scale master planning is introduced. This chapter also addressed the needs for the development of a more holistic and pragmatic view of how the built environment performs, , in order to produce tools to help design for a higher level of sustainability and, in particular, how people plan, design and use it. Chapter four discusses microcirculation, which is an emerging and challenging area which relates to changing travel behaviour in the quest for urban sustainability. The chapter outlines the main drivers for travel behaviour and choices, the workings of the transport system and its interaction with urban land use. It also covers the new approach to managing urban traffic to maximise economic, social and environmental benefits. Chapters five and six present topics related to urban microclimates including thermal and acoustic issues. Chapter five discusses urban microclimates and urban heat island, as well as the interrelationship of urban design (urban forms and textures) with energy consumption and urban thermal comfort. It introduces models that can be used to analyse microclimates for a careful and considered approach for planning sustainable cities. Chapter six discusses urban acoustics, focusing on urban noise evaluation and mitigation. Various prediction and simulation methods for sound propagation in micro-scale urban areas, as well as techniques for large scale urban noise-mapping, are presented. Chapters seven and eight discuss urban drainage and waste management. The growing demand for housing and commercial developments in the 21st century, as well as the environmental pressure caused by climate change, has increased the focus on sustainable urban drainage systems (SUDS). Chapter seven discusses the SUDS concept which is an integrated approach to surface water management. It takes into consideration quality, quantity and amenity aspects to provide a more pleasant habitat for people as well as increasing the biodiversity value of the local environment. Chapter eight discusses the main issues in urban waste management. It points out that population increases, land use pressures, technical and socio-economic influences have become inextricably interwoven and how ensuring a safe means of dealing with humanity’s waste becomes more challenging. Sustainable building design needs to consider healthy indoor environments, minimising energy for heating, cooling and lighting, and maximising the utilisation of renewable energy. Chapter nine considers how people respond to the physical environment and how that is used in the design of indoor environments. It considers environmental components such as thermal, acoustic, visual, air quality and vibration and their interaction and integration. Chapter ten introduces the concept of passive building design and its relevant strategies, including passive solar heating, shading, natural ventilation, daylighting and thermal mass, in order to minimise heating and cooling load as well as energy consumption for artificial lighting. Chapter eleven discusses the growing importance of integrating Renewable Energy Technologies (RETs) into buildings, the range of technologies currently available and what to consider during technology selection processes in order to minimise carbon emissions from burning fossil fuels. The chapter draws to a close by highlighting the issues concerning system design and the need for careful integration and management of RETs once installed; and for home owners and operators to understand the characteristics of the technology in their building. Computer simulation tools play a significant role in sustainable building design because, as the modern built environment design (building and systems) becomes more complex, it requires tools to assist in the design process. Chapter twelve gives an overview of the primary benefits and users of simulation programs, the role of simulation in the construction process and examines the validity and interpretation of simulation results. Chapter thirteen particularly focuses on the Computational Fluid Dynamics (CFD) simulation method used for optimisation and performance assessment of technologies and solutions for sustainable building design and its application through a series of cases studies. People and building performance are intimately linked. A better understanding of occupants’ interaction with the indoor environment is essential to building energy and facilities management. Chapter fourteen focuses on the issue of occupant behaviour; principally, its impact, and the influence of building performance on them. Chapter fifteen explores the discipline of facilities management and the contribution that this emerging profession makes to securing sustainable building performance. The chapter highlights a much greater diversity of opportunities in sustainable building design that extends well into the operational life. Chapter sixteen reviews the concepts of modelling information flows and the use of Building Information Modelling (BIM), describing these techniques and how these aspects of information management can help drive sustainability. An explanation is offered concerning why information management is the key to ‘life-cycle’ thinking in sustainable building and construction. Measurement of building performance and sustainability is a key issue in delivering a sustainable built environment. Chapter seventeen identifies the means by which construction materials can be evaluated with respect to their sustainability. It identifies the key issues that impact the sustainability of construction materials and the methodologies commonly used to assess them. Chapter eighteen focuses on the topics of green building assessment, green building materials, sustainable construction and operation. Commonly-used assessment tools such as BRE Environmental Assessment Method (BREEAM), Leadership in Energy and Environmental Design ( LEED) and others are introduced. Chapter nineteen discusses sustainable procurement which is one of the areas to have naturally emerged from the overall sustainable development agenda. It aims to ensure that current use of resources does not compromise the ability of future generations to meet their own needs. Chapter twenty is a best-practice exemplar - the BRE Innovation Park which features a number of demonstration buildings that have been built to the UK Government’s Code for Sustainable Homes. It showcases the very latest innovative methods of construction, and cutting edge technology for sustainable buildings. In summary, Design and Management of Sustainable Built Environment book is the result of co-operation and dedication of individual chapter authors. We hope readers benefit from gaining a broad interdisciplinary knowledge of design and management in the built environment in the context of sustainability. We believe that the knowledge and insights of our academics and professional colleagues from different institutions and disciplines illuminate a way of delivering sustainable built environment through holistic integrated design and management approaches. Last, but not least, I would like to take this opportunity to thank all the chapter authors for their contribution. I would like to thank David Lim for his assistance in the editorial work and proofreading.