21 resultados para indexing
Resumo:
Chess endgame tables should provide efficiently the value and depth of any required position during play. The indexing of an endgame’s positions is crucial to meeting this objective. This paper updates Heinz’ previous review of approaches to indexing and describes the latest approach by the first and third authors. Heinz’ and Nalimov’s endgame tables (EGTs) encompass the en passant rule and have the most compact index schemes to date. Nalimov’s EGTs, to the Distance-to-Mate (DTM) metric, require only 30.6 × 10^9 elements in total for all the 3-to-5-man endgames and are individually more compact than previous tables. His new index scheme has proved itself while generating the tables and in the 1999 World Computer Chess Championship where many of the top programs used the new suite of EGTs.
Resumo:
Chess endgame tables should provide efficiently the value and depth of any required position during play. The indexing of an endgame’s positions is crucial to meeting this objective. This paper updates Heinz’ previous review of approaches to indexing and describes the latest approach by the first and third authors. Heinz’ and Nalimov’s endgame tables (EGTs) encompass the en passant rule and have the most compact index schemes to date. Nalimov’s EGTs, to the Distance-to-Mate (DTM) metric, require only 30.6 × 109 elements in total for all the 3-to-5-man endgames and are individually more compact than previous tables. His new index scheme has proved itself while generating the tables and in the 1999 World Computer Chess Championship where many of the top programs used the new suite of EGTs.
Resumo:
There are still major challenges in the area of automatic indexing and retrieval of digital data. The main problem arises from the ever increasing mass of digital media and the lack of efficient methods for indexing and retrieval of such data based on the semantic content rather than keywords. To enable intelligent web interactions or even web filtering, we need to be capable of interpreting the information base in an intelligent manner. Research has been ongoing for a few years in the field of ontological engineering with the aim of using ontologies to add knowledge to information. In this paper we describe the architecture of a system designed to automatically and intelligently index huge repositories of special effects video clips, based on their semantic content, using a network of scalable ontologies to enable intelligent retrieval.
Resumo:
A novel framework for multimodal semantic-associative collateral image labelling, aiming at associating image regions with textual keywords, is described. Both the primary image and collateral textual modalities are exploited in a cooperative and complementary fashion. The collateral content and context based knowledge is used to bias the mapping from the low-level region-based visual primitives to the high-level visual concepts defined in a visual vocabulary. We introduce the notion of collateral context, which is represented as a co-occurrence matrix, of the visual keywords, A collaborative mapping scheme is devised using statistical methods like Gaussian distribution or Euclidean distance together with collateral content and context-driven inference mechanism. Finally, we use Self Organising Maps to examine the classification and retrieval effectiveness of the proposed high-level image feature vector model which is constructed based on the image labelling results.
Resumo:
A large volume of visual content is inaccessible until effective and efficient indexing and retrieval of such data is achieved. In this paper, we introduce the DREAM system, which is a knowledge-assisted semantic-driven context-aware visual information retrieval system applied in the film post production domain. We mainly focus on the automatic labelling and topic map related aspects of the framework. The use of the context- related collateral knowledge, represented by a novel probabilistic based visual keyword co-occurrence matrix, had been proven effective via the experiments conducted during system evaluation. The automatically generated semantic labels were fed into the Topic Map Engine which can automatically construct ontological networks using Topic Maps technology, which dramatically enhances the indexing and retrieval performance of the system towards an even higher semantic level.
Resumo:
The Escherichia coli O26 serogroup includes important food-borne pathogens associated with human and animal diarrheal disease. Current typing methods have revealed great genetic heterogeneity within the O26 group; the data are often inconsistent and focus only on verotoxin (VT)-positive O26 isolates. To improve current understanding of diversity within this serogroup, the genomic relatedness of VT-positive and -negative O26 strains was assessed by comparative genomic indexing. Our results clearly demonstrate that irrespective of virulence characteristics and pathotype designation, the O26 strains show greater genomic similarity to each other than to any other strain included in this study. Our data suggest that enteropathogenic and VT-expressing E. coli O26 strains represent the same clonal lineage and that W-expressing E. coli O26 strains have gained additional virulence characteristics. Using this approach, we established the core genes which are central to the E. coli species and identified regions of variation from the E. coli K-12 chromosomal backbone.
Resumo:
Many projects, e.g. VIKEF [13] and KIM [7], present grounded approaches for the use of entities as a means of indexing and retrieval of multimedia resources from heterogeneous sources. In this paper, we discuss the state-of-the-art of entity-centric approaches for multimedia indexing and retrieval. A summary of projects employing entity-centric repositories are portrayed. This paper also looks at the current state-of-the-art authoring environment, Macromedia Authorware, and the possibility of potential extension of this environment for entity-based multimedia authoring.
Resumo:
There are still major challenges in the area of automatic indexing and retrieval of multimedia content data for very large multimedia content corpora. Current indexing and retrieval applications still use keywords to index multimedia content and those keywords usually do not provide any knowledge about the semantic content of the data. With the increasing amount of multimedia content, it is inefficient to continue with this approach. In this paper, we describe the project DREAM, which addresses such challenges by proposing a new framework for semi-automatic annotation and retrieval of multimedia based on the semantic content. The framework uses the Topic Map Technology, as a tool to model the knowledge automatically extracted from the multimedia content using an Automatic Labelling Engine. We describe how we acquire knowledge from the content and represent this knowledge using the support of NLP to automatically generate Topic Maps. The framework is described in the context of film post-production.
Resumo:
In any data mining applications, automated text and text and image retrieval of information is needed. This becomes essential with the growth of the Internet and digital libraries. Our approach is based on the latent semantic indexing (LSI) and the corresponding term-by-document matrix suggested by Berry and his co-authors. Instead of using deterministic methods to find the required number of first "k" singular triplets, we propose a stochastic approach. First, we use Monte Carlo method to sample and to build much smaller size term-by-document matrix (e.g. we build k x k matrix) from where we then find the first "k" triplets using standard deterministic methods. Second, we investigate how we can reduce the problem to finding the "k"-largest eigenvalues using parallel Monte Carlo methods. We apply these methods to the initial matrix and also to the reduced one. The algorithms are running on a cluster of workstations under MPI and results of the experiments arising in textual retrieval of Web documents as well as comparison of the stochastic methods proposed are presented. (C) 2003 IMACS. Published by Elsevier Science B.V. All rights reserved.