45 resultados para incremental computation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eight Jersey cows were used in two balanced 4 x 4 Latin Squares to investigate the effects of replacement of dietary starch with non-forage fibre on productivity, diet digestibility and feeding behaviour. Total-mixed rations consisted of maize silage, grass silage and a soyabean meal-based concentrate mixture, each at 250g/kg DM, with the remaining 250g consisting of cracked wheat/soya hulls (SH) in the ratios of 250:0, 167:83; 83:167 and 0:250 g, respectively, for treatments SH0, SH83, SH167 and SH250. Starch concentrations were 302, 248, 193 and 140g/kg DM, and NDF concentrations were 316, 355, 394 and 434g/kg DM, for treatments SHO, SH83, SH167 and SH250, respectively. Total eating time increased (p < 0.05) as SH inclusion increased, but total rumination time was unaffected. Digestibility of DM, organic matter and starch declined (p < 0.01) as SH inclusion increased, whilst digestibility of NDF and ADF increased (p < 0.01). Dry-matter intake tended to decline with increasing SH, whilst bodyweight, milk yield and fat and lactose concentrations were unaffected by treatment. Milk protein concentration decreased (p < 0.01) as SH level increased. Feed conversion efficiency improved (p < 0.05) as SH inclusion rose, but it was not possible to determine whether this was due to the increased fibre levels alone, or the favourable effect on rumen fermentation of decreasing starch levels. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sequential techniques can enhance the efficiency of the approximate Bayesian computation algorithm, as in Sisson et al.'s (2007) partial rejection control version. While this method is based upon the theoretical works of Del Moral et al. (2006), the application to approximate Bayesian computation results in a bias in the approximation to the posterior. An alternative version based on genuine importance sampling arguments bypasses this difficulty, in connection with the population Monte Carlo method of Cappe et al. (2004), and it includes an automatic scaling of the forward kernel. When applied to a population genetics example, it compares favourably with two other versions of the approximate algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic data obtained on population samples convey information about their evolutionary history. Inference methods can extract part of this information but they require sophisticated statistical techniques that have been made available to the biologist community (through computer programs) only for simple and standard situations typically involving a small number of samples. We propose here a computer program (DIY ABC) for inference based on approximate Bayesian computation (ABC), in which scenarios can be customized by the user to fit many complex situations involving any number of populations and samples. Such scenarios involve any combination of population divergences, admixtures and population size changes. DIY ABC can be used to compare competing scenarios, estimate parameters for one or more scenarios and compute bias and precision measures for a given scenario and known values of parameters (the current version applies to unlinked microsatellite data). This article describes key methods used in the program and provides its main features. The analysis of one simulated and one real dataset, both with complex evolutionary scenarios, illustrates the main possibilities of DIY ABC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is great interest in using amplified fragment length polymorphism (AFLP) markers because they are inexpensive and easy to produce. It is, therefore, possible to generate a large number of markers that have a wide coverage of species genotnes. Several statistical methods have been proposed to study the genetic structure using AFLP's but they assume Hardy-Weinberg equilibrium and do not estimate the inbreeding coefficient, F-IS. A Bayesian method has been proposed by Holsinger and colleagues that relaxes these simplifying assumptions but we have identified two sources of bias that can influence estimates based on these markers: (i) the use of a uniform prior on ancestral allele frequencies and (ii) the ascertainment bias of AFLP markers. We present a new Bayesian method that avoids these biases by using an implementation based on the approximate Bayesian computation (ABC) algorithm. This new method estimates population-specific F-IS and F-ST values and offers users the possibility of taking into account the criteria for selecting the markers that are used in the analyses. The software is available at our web site (http://www-leca.uif-grenoble.fi-/logiciels.htm). Finally, we provide advice on how to avoid the effects of ascertainment bias.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The estimation of effective population size from one sample of genotypes has been problematic because most estimators have been proven imprecise or biased. We developed a web-based program, ONeSAMP that uses approximate Bayesian computation to estimate effective population size from a sample of microsatellite genotypes. ONeSAMP requires an input file of sampled individuals' microsatellite genotypes along with information about several sampling and biological parameters. ONeSAMP provides an estimate of effective population size, along with 95% credible limits. We illustrate the use of ONeSAMP with an example data set from a re-introduced population of ibex Capra ibex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe and evaluate a new estimator of the effective population size (N-e), a critical parameter in evolutionary and conservation biology. This new "SummStat" N-e. estimator is based upon the use of summary statistics in an approximate Bayesian computation framework to infer N-e. Simulations of a Wright-Fisher population with known N-e show that the SummStat estimator is useful across a realistic range of individuals and loci sampled, generations between samples, and N-e values. We also address the paucity of information about the relative performance of N-e estimators by comparing the SUMMStat estimator to two recently developed likelihood-based estimators and a traditional moment-based estimator. The SummStat estimator is the least biased of the four estimators compared. In 32 of 36 parameter combinations investigated rising initial allele frequencies drawn from a Dirichlet distribution, it has the lowest bias. The relative mean square error (RMSE) of the SummStat estimator was generally intermediate to the others. All of the estimators had RMSE > 1 when small samples (n = 20, five loci) were collected a generation apart. In contrast, when samples were separated by three or more generations and Ne less than or equal to 50, the SummStat and likelihood-based estimators all had greatly reduced RMSE. Under the conditions simulated, SummStat confidence intervals were more conservative than the likelihood-based estimators and more likely to include true N-e. The greatest strength of the SummStat estimator is its flexible structure. This flexibility allows it to incorporate any, potentially informative summary statistic from Population genetic data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the impact of imperfect synchronisation on D-STBC when combined with incremental relay. To suppress such an impact, a novel detection scheme is proposed, which retains the two key features of the STBC principle: simplicity (i.e. linear computational complexity), and optimality (i.e. maximum likelihood). These two features make the new detector very suitable for low power wireless networks (e.g. sensor networks).