24 resultados para histone methylation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate flower induction in June-bearing strawberry plants, morphological changes in shoot apices and Historic H4 expression in the central zone during flower initiation were observed. Strawberry plants were placed under flower inducible, short-day conditions (23 degrees C/17 degrees C, 10 h day length) for differing number of days (8, 16, 20, 24 or 32 days) and then these plants were transferred to non-inducible, long-day conditions (25 degrees C/20 degrees C, 14 h day length). The shoot apices of plants placed under short-day conditions for 8 days were flat, similar to shoot apices of plants in the vegetative phase of development, and Histone H4 was not expressed in the central zone during the experimental period. On the other hand, the shoot apices of plants placed under short-day conditions for 16 days remained flat, similar to shoot apices of plants placed under short-day conditions for 8 days, but Histone H4 was expressed in the central zone at the end of the short-day treatment. Morphological changes in the shoot apices of these plants were observed 8 days after the change in day-length. These plants developed differentiated flower organs after they were grown for another 30 days under long-day conditions. These results indicate that changes in the expression pattern of the Histone H4 gene occur before morphological changes during flower induction and that the expression of the gene in the central zone can be used as one of the indicators of the flowering process in strawberries. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 5'-cap-structures of higher eukaryote mRNAs are ribose 2'-O-methylated. Likewise, a number of viruses replicating in the cytoplasm of eukayotes have evolved 2'-O-methyltransferases to modify autonomously their mRNAs. However, a defined biological role of mRNA 2'-O-methylation remains elusive. Here we show that viral mRNA 2'-O-methylation is critically involved in subversion of type-I-interferon (IFN-I) induction. We demonstrate that human and murine coronavirus 2'-O-methyltransferase mutants induce increased IFN-I expression, and are highly IFN-I sensitive. Importantly, IFN-I induction by 2'-O-methyltransferase-deficient viruses is dependent on the cytoplasmic RNA sensor melanoma differentiation-associated gene 5 (MDA5). This link between MDA5-mediated sensing of viral RNA and mRNA 2'-O-methylation suggests that RNA modifications, such as 2'-O-methylation, provide a molecular signature for the discrimination of self and non-self mRNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Environmental cues influence the development of stomata on the leaf epidermis, and allow plants to exert plasticity in leaf stomatal abundance in response to the prevailing growing conditions. It is reported that Arabidopsis thaliana ‘Landsberg erecta’ plants grown under low relative humidity have a reduced stomatal index and that two genes in the stomatal development pathway, SPEECHLESS and FAMA, become de novo cytosine methylated and transcriptionally repressed. These environmentally-induced epigenetic responses were abolished in mutants lacking the capacity for de novo DNA methylation, for the maintenance of CG methylation, and in mutants for the production of short-interfering non-coding RNAs (siRNAs) in the RNA-directed DNA methylation pathway. Induction of methylation was quantitatively related to the induction of local siRNAs under low relative humidity. Our results indicate the involvement of both transcriptional and post-transcriptional gene suppression at these loci in response to environmental stress. Thus, in a physiologically important pathway, a targeted epigenetic response to a specific environmental stress is reported and several of its molecular, mechanistic components are described, providing a tractable platform for future epigenetics experiments. Our findings suggest epigenetic regulation of stomatal development that allows for anatomical and phenotypic plasticity, and may help to explain at least some of the plant’s resilience to fluctuating relative humidity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tumour suppressor APC is the most commonly altered gene in colorectal cancer (CRC). Genetic and epigenetic alterations of APC may therefore be associated with dietary and lifestyle risk factors for CRC. Analysis of APC mutations in the extended mutation cluster region (codons 1276-1556) and APC promoter 1A methylation was performed on 185 archival CRC samples collected from participants of the European Prospective Investigation into Cancer (EPIC)-Norfolk Study, with the aim of relating these to high quality seven-day dietary and lifestyle data collected prospectively. Truncating APC mutations (APC+) and promoter 1A methylation (PM+) were identified in 43% and 23% of CRCs analysed, respectively. Distal CRCs were more likely than proximal CRCs to be APC+ or PM+ (P = 0.04). APC+ CRCs were more likely to be moderately/well differentiated and microsatellite stable than APC- CRCs (P = 0.05 and 0.03). APC+ CRC cases consumed more alcohol than their counterparts (P = 0.01) and PM+ CRC cases consumed lower levels of folate and fibre (P = 0.01 and 0.004). APC+ or PM+ CRC cases consumedhigher levels of processed meat and iron from red meat and red meat products (P=0.007 and 0.006). Specifically, CRC cases harbouring GC to AT transition mutations consumed higher levels of processed meat (35 versus 24 g/day, P = 0.04) and iron from red meat and red meat products (0.8 versus 0.6 mg/day, P = 0.05). In a logistic regression model adjusted for age, sex and cigarette smoking status, each 19g/day (1SD) increment increase in processed meat consumption was associated with cases with GC to AT mutations (OR 1.68, 95% CI 1.03-2.75). In conclusion, APC+ and PM+ CRCs may be influenced by diet and GC to AT mutations in APC are associated with processed meat consumption, suggesting a mechanistic link with dietary alkylating agents, such as N-nitroso compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aberrant methylation of CpG islands (CGI) occurs in many genes expressed in colonic epithelial cells, and may contribute to the dysregulation of signalling pathways associated with carcinogenesis. This cross-sectional study assessed the relative importance of age, nutritional exposures and other environmental factors in the development of CGI methylation. Rectal biopsies were obtained from 185 individuals (84 male, 101 female) shown to be free of colorectal disease, and for whom measurements of age, body size, nutritional status and blood cell counts were available. We used quantitative DNA methylation analysis combined with multivariate modelling to investigate the relationships between nutritional, anthropometric and metabolic factors and the CGI methylation of 11 genes, together with LINE-1 as an index of global DNA methylation. Age was a consistent predictor of CGI methylation for 9/11 genes but significant positive associations with folate status and negative associations with vitamin D and selenium status were also identified for several genes. There was evidence for positive associations with blood monocyte levels and anthropometric factors for some genes. In general, CGI methylation was higher in males than in females and differential effects of age and other factors on methylation in males and females were identified. In conclusion, levels of age-related CGI methylation in the healthy human rectal mucosa are influenced by gender, the availability of folate, vitamin D and selenium, and perhaps by factors related to systemic inflammation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing evidence suggests that obesity is a chronic inflammatory disease, in which adipose tissue is involved in a network of endocrine signals to modulate energy homeostasis. These oxidative-inflammatory pathways, which are associated with cardiovascular complications, are also observed during the aging process. In this study, we investigated the interaction between aging and the development of obesity in a hyperphagic rat model. Metabolic profiles of the liver, white adipose tissue (WAT) and heart from young and adult Zucker lean (fa/+) and obese (fa/fa) rats were characterized using a (1)H NMR-based metabonomics approach. We observed premature metabolic modifications in all studied organs in obese animals, some of which were comparable to those observed in adult lean animals. In the cardiac tissue, young obese rats displayed lower lactate and scyllo-inositol levels associated with higher creatine, choline and phosphocholine levels, indicating an early modulation of energy and membrane metabolism. An early alteration of the hepatic methylation and transsulfuration pathways in both groups of obese rats indicated that these pathways were affected before diabetic onset. These findings therefore support the hypothesis that obesity parallels some metabolic perturbations observed in the aging process and provides new insights into the metabolic modifications occurring in pre-diabetic state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The health benefits of garlic have been proven by epidemiological and experimental studies. Diallyl disulphide (DADS), the major organosulfur compound found in garlic oil, is known to lower the incidence of breast cancer both in vitro and in vivo. The studies reported here demonstrate that DADS induces apoptosis in the MCF-7 breast-cancer cell line through interfering with cell-cycle growth phases in a way that increases the sub-G0 population and substantially halts DNA synthesis. DADS also induces phosphatidylserine (PS) translocation from the inner to the outer leaflet of the plasma membrane and activates caspase-3. Further studies revealed that DADS modulates the cellular levels of Bax, Bcl-2, Bcl-xL and Bcl-w in a dose-dependent manner, suggesting the involvement of Bcl-2 family proteins in DADS induced apoptosis. Histone deacetylation inhibitors (HDACi) are known to suppress cancer growth and induce apoptosis in cancer cells. Here it is shown that DADS has HDACi properties in MCF-7 cells as it lowers the removal of an acetyl group from an acetylated substrate and induces histone-4 (H4) hyper-acetylation. The data thus indicate that the HDACi properties of DADS may be responsible for the induction of apoptosis in breast cancer cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transgenerational inheritance of abiotic stress-induced epigenetic modifications in plants has potential adaptive significance and might condition the offspring to improve the response to the same stress, but this is at least partly dependent on the potency, penetrance and persistence of the transmitted epigenetic marks. We examined transgenerational inheritance of low Relative Humidity-induced DNA methylation for two gene loci in the stomatal developmental pathway in Arabidopsis thaliana and the abundance of associated short-interfering RNAs (siRNAs). Heritability of low humidity-induced methylation was more predictable and penetrative at one locus (SPEECHLESS, entropy ≤ 0.02; χ2 < 0.001) than the other (FAMA, entropy ≤ 0.17; χ2 ns). Methylation at SPEECHLESS correlated positively with the continued presence of local siRNAs (r2 = 0.87; p = 0.013) which, however, could be disrupted globally in the progeny under repeated stress. Transgenerational methylation and a parental low humidity-induced stomatal phenotype were heritable, but this was reversed in the progeny under repeated treatment in a previously unsuspected manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Somatic embryogenesis (SE) in plants is a process by which embryos are generated directly from somatic cells, rather than from the fused products of male and female gametes. Despite the detailed expression analysis of several somatic-to-embryonic marker genes, a comprehensive understanding of SE at a molecular level is still lacking. The present study was designed to generate high resolution transcriptome datasets for early SE providing the way for future research to understand the underlying molecular mechanisms that regulate this process. We sequenced Arabidopsis thaliana somatic embryos collected from three distinct developmental time-points (5, 10 and 15 d after in vitro culture) using the Illumina HiSeq 2000 platform. Results This study yielded a total of 426,001,826 sequence reads mapped to 26,520 genes in the A. thaliana reference genome. Analysis of embryonic cultures after 5 and 10 d showed differential expression of 1,195 genes; these included 778 genes that were more highly expressed after 5 d as compared to 10 d. Moreover, 1,718 genes were differentially expressed in embryonic cultures between 10 and 15 d. Our data also showed at least eight different expression patterns during early SE; the majority of genes are transcriptionally more active in embryos after 5 d. Comparison of transcriptomes derived from somatic embryos and leaf tissues revealed that at least 4,951 genes are transcriptionally more active in embryos than in the leaf; increased expression of genes involved in DNA cytosine methylation and histone deacetylation were noted in embryogenic tissues. In silico expression analysis based on microarray data found that approximately 5% of these genes are transcriptionally more active in somatic embryos than in actively dividing callus and non-dividing leaf tissues. Moreover, this identified 49 genes expressed at a higher level in somatic embryos than in other tissues. This included several genes with unknown function, as well as others related to oxidative and osmotic stress, and auxin signalling. Conclusions The transcriptome information provided here will form the foundation for future research on genetic and epigenetic control of plant embryogenesis at a molecular level. In follow-up studies, these data could be used to construct a regulatory network for SE; the genes more highly expressed in somatic embryos than in vegetative tissues can be considered as potential candidates to validate these networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anxiety disorders that are the most commonly occurring psychiatric disorders in childhood, are associated with a range of social and educational impairments and often continue into adulthood. Cognitive behaviour therapy (CBT) is an effective treatment option for the majority of cases, although up to 35-45% of children do not achieve remission. Recent research suggests that some genetic variants may be associated with a more beneficial response to psychological therapy. Epigenetic mechanisms such as DNA methylation work at the interface between genetic and environmental influences. Furthermore, epigenetic alterations at the serotonin transporter (SERT) promoter region have been associated with environmental influences such as stressful life experiences. In this study, we measured DNA methylation upstream of SERT in 116 children with an anxiety disorder, before and after receiving CBT. Change during treatment in percentage DNA methylation was significantly different in treatment responders vs nonresponders. This effect was driven by one CpG site in particular, at which responders increased in methylation, whereas nonresponders showed a decrease in DNA methylation. This is the first study to demonstrate differences in SERT methylation change in association with response to a purely psychological therapy. These findings confirm that biological changes occur alongside changes in symptomatology following a psychological therapy such as CBT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The polychaete worm Nereis diversicolor engineers its environment by creating oxygenated burrows in anoxic intertidal sediments. The authors carried out a laboratory microcosm experiment to test the impact of polychaete burrowing and feeding activity on the lability and methylation of mercury in sediments from the Bay of Fundy, Canada. The concentration of labile inorganic mercury and methylmercury in burrow walls was elevated compared to worm-free sediments. Mucus secretions and organic detritus in worm burrows increased labile mercury concentrations. Worms decreased sulfide concentrations, which increased Hg bioavailability to sulfate-reducing bacteria and increased methylmercury concentrations in burrow linings. Because the walls of polychaete burrows have a greater interaction with organisms, and the overlying water, the concentrations of mercury and methylmercury they contain is more toxicologically relevant to the base of a coastal food web than bulk samples. The authors recommend that researchers examining Hg in marine environments account for sediment dwelling invertebrate activity to more fully assess mercury bioavailability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AtTRB1, 2 and 3 are members of the SMH (single Myb histone) protein family, which comprises double-stranded DNA-binding proteins that are specific to higher plants. They are structurally conserved, containing a Myb domain at the N-terminus, a central H1/H5-like domain and a C-terminally located coiled-coil domain. AtTRB1, 2 and 3 interact through their Myb domain specifically with telomeric double-stranded DNA in vitro, while the central H1/H5-like domain interacts non-specifically with DNA sequences and mediates protein–protein interactions. Here we show that AtTRB1, 2 and 3 preferentially localize to the nucleus and nucleolus during interphase. Both the central H1/H5-like domain and the Myb domain from AtTRB1 can direct a GFP fusion protein to the nucleus and nucleolus. AtTRB1–GFP localization is cell cycle-regulated, as the level of nuclear-associated GFP diminishes during mitotic entry and GFP progressively re-associates with chromatin during anaphase/telophase. Using fluorescence recovery after photobleaching and fluorescence loss in photobleaching, we determined the dynamics of AtTRB1 interactions in vivo. The results reveal that AtTRB1 interaction with chromatin is regulated at two levels at least, one of which is coupled with cell-cycle progression, with the other involving rapid exchange.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increasingly, we regard the genome as a site and source of genetic conflict. This fascinating 'bottom-up' view brings up appealing connections between genome biology and whole-organism ecology, in which populations of elements compete with one another in their genomic habitat. Unlike other habitats, though, a host genome has its own evolutionary interests and is often able to defend itself against molecular parasites. Most well-studied organisms employ strategies to protect their genomes against the harmful effects of genomic parasites, including methylation, various pathways of RNA interference, and more unusual tricks such as repeat induced point-mutation (RIP). These genome defence systems are not obscure biological curiosities, but fundamentally important to the integrity and cohesion of the genome, and exert a powerful influence on genome evolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

X-ray crystal structure shows that 3,5-dimethyl-1-(2-nitrophenyl)-1H-pyrazole (DNP) belongs to the rare class of helically twisted synthetic organic molecules. Hydrogenation of DNP gives 2-(3,5-dimethylpyrazole-1-yl)phenylamine (L) which on methylation yields [2-(3,5-dimethylpyrazole-1-yl)phenyl]dimethylamine (L'). Two Pd(II) complexes, PdLCl2 (1) and PdL'Cl-2 (2), are synthesized and characterized by NMR. X-ray crystallography reveals that 1 and 2 are unprecedented square planar complexes which possess well discernible helical twists. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The neuroprotective effects of flavonoids will ultimately depend on their interaction with both neuronal and glial cells. in this study, we show that the potential neurotoxic effects of quercetin are modified by glial cell interactions. Specifically, quercetin is rapidly conjugated to glutathione within glial cells to yield 2 '-glutathionyl-quercetin, which is exported from cells but has significantly reduced neurotoxicity. In addion, quercetin underwent intracellular O-methylation to yield 3 '-O-methyl-quercetin and 4 '-O-methyl-quercetin, although these were not exported from glia at the same rate as the glutathionyl adduct. The neurotoxic potential of both quercetin and 2 '-glutathionyl-quercetin paralleled their ability to modulate the pro-survival Akt/PKB and extracellular signal-regulated kinase (ERK) signalling pathways. These data were supported by co-culture investigation, where the neurotoxic effects of quercetin were significantly reduced when they were cultured alongside glial cells. We propose that glial cells act to protect neurons against the neurotoxic effects of quercetin and that 2 '-glutathionyl-quercetin represents a novel quercetin metabolite. (c) 2008 Elsevier Inc. All rights reserved.