34 resultados para geographical information systems (GIS)
Resumo:
Our ability to identify, acquire, store, enquire on and analyse data is increasing as never before, especially in the GIS field. Technologies are becoming available to manage a wider variety of data and to make intelligent inferences on that data. The mainstream arrival of large-scale database engines is not far away. The experience of using the first such products tells us that they will radically change data management in the GIS field.
Resumo:
The aim of the study was to establish and verify a predictive vegetation model for plant community distribution in the alti-Mediterranean zone of the Lefka Ori massif, western Crete. Based on previous work three variables were identified as significant determinants of plant community distribution, namely altitude, slope angle and geomorphic landform. The response of four community types against these variables was tested using classification trees analysis in order to model community type occurrence. V-fold cross-validation plots were used to determine the length of the best fitting tree. The final 9node tree selected, classified correctly 92.5% of the samples. The results were used to provide decision rules for the construction of a spatial model for each community type. The model was implemented within a Geographical Information System (GIS) to predict the distribution of each community type in the study site. The evaluation of the model in the field using an error matrix gave an overall accuracy of 71%. The user's accuracy was higher for the Crepis-Cirsium (100%) and Telephium-Herniaria community type (66.7%) and relatively lower for the Peucedanum-Alyssum and Dianthus-Lomelosia community types (63.2% and 62.5%, respectively). Misclassification and field validation points to the need for improved geomorphological mapping and suggests the presence of transitional communities between existing community types.
Resumo:
The aim of the study was to establish and verify a predictive vegetation model for plant community distribution in the alti-Mediterranean zone of the Lefka Ori massif, western Crete. Based on previous work three variables were identified as significant determinants of plant community distribution, namely altitude, slope angle and geomorphic landform. The response of four community types against these variables was tested using classification trees analysis in order to model community type occurrence. V-fold cross-validation plots were used to determine the length of the best fitting tree. The final 9node tree selected, classified correctly 92.5% of the samples. The results were used to provide decision rules for the construction of a spatial model for each community type. The model was implemented within a Geographical Information System (GIS) to predict the distribution of each community type in the study site. The evaluation of the model in the field using an error matrix gave an overall accuracy of 71%. The user's accuracy was higher for the Crepis-Cirsium (100%) and Telephium-Herniaria community type (66.7%) and relatively lower for the Peucedanum-Alyssum and Dianthus-Lomelosia community types (63.2% and 62.5%, respectively). Misclassification and field validation points to the need for improved geomorphological mapping and suggests the presence of transitional communities between existing community types.
Resumo:
Information modelling is a topic that has been researched a great deal, but still many questions around it have not been solved. An information model is essential in the design of a database which is the core of an information system. Currently most of databases only deal with information that represents facts, or asserted information. The ability of capturing semantic aspect has to be improved, and yet other types, such as temporal and intentional information, should be considered. Semantic Analysis, a method of information modelling, has offered a way to handle various aspects of information. It employs the domain knowledge and communication acts as sources of information modelling. It lends itself to a uniform structure whereby semantic, temporal and intentional information can be captured, which builds a sound foundation for building a semantic temporal database.