25 resultados para gas flow


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The requirement to rapidly and efficiently evaluate ruminant feedstuffs places increased emphasis on in vitro systems. However, despite the developmental work undertaken and widespread application of such techniques, little attention has been paid to the incubation medium. Considerable research using in vitro systems is conducted in resource-poor developing countries that often have difficulties associated with technical expertise, sourcing chemicals and/or funding to cover analytical and equipment costs. Such limitations have, to date, restricted vital feed evaluation programmes in these regions. This paper examines the function and relevance of the buffer, nutrient, and reducing solution components within current in vitro media, with the aim of identifying where simplification can be achieved. The review, supported by experimental work, identified no requirement to change the carbonate or phosphate salts, which comprise the main buffer components. The inclusion of microminerals provided few additional nutrients over that already supplied by the rumen fluid and substrate, and so may be omitted. Nitrogen associated with the inoculum was insufficient to support degradation and a level of 25 mg N/g substrate is recommended. A sulphur inclusion level of 4-5 mg S/g substrate is proposed, with S levels lowered through omission of sodium sulphide and replacement of magnesium sulphate with magnesium chloride. It was confirmed that a highly reduced medium was not required, provided that anaerobic conditions were rapidly established. This allows sodium sulphide, part of the reducing solution, to be omitted. Further, as gassing with CO2 directly influences the quantity of gas released, it is recommended that minimum CO, levels be used and that gas flow and duration, together with the volume of medium treated, are detailed in experimental procedures. It is considered that these simplifications will improve safety and reduce costs and problems associated with sourcing components, while maintaining analytical precision. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An approximate Riemann solver is presented for the compressible flow equations with a general (convex) equation of state in a Lagrangian frame of reference.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents novel observer-based techniques for the estimation of flow demands in gas networks, from sparse pressure telemetry. A completely observable model is explored, constructed by incorporating difference equations that assume the flow demands are steady. Since the flow demands usually vary slowly with time, this is a reasonable approximation. Two techniques for constructing robust observers are employed: robust eigenstructure assignment and singular value assignment. These techniques help to reduce the effects of the system approximation. Modelling error may be further reduced by making use of known profiles for the flow demands. The theory is extended to deal successfully with the problem of measurement bias. The pressure measurements available are subject to constant biases which degrade the flow demand estimates, and such biases need to be estimated. This is achieved by constructing a further model variation that incorporates the biases into an augmented state vector, but now includes information about the flow demand profiles in a new form.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Using a simple and accessible Teflon AF-2400 based tube-intube reactor, a series of pyrroles were synthesised in flow using the Paal–Knorr reaction of 1,4-diketones with gaseous ammonia. An inline flow titration technique allowed measurement of the ammonia concentration and its relationship to residence time and temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A number of recent experiments suggest that, at a given wetting speed, the dynamic contact angle formed by an advancing liquid-gas interface with a solid substrate depends on the flow field and geometry near the moving contact line. In the present work, this effect is investigated in the framework of an earlier developed theory that was based on the fact that dynamic wetting is, by its very name, a process of formation of a new liquid-solid interface (newly “wetted” solid surface) and hence should be considered not as a singular problem but as a particular case from a general class of flows with forming or/and disappearing interfaces. The results demonstrate that, in the flow configuration of curtain coating, where a liquid sheet (“curtain”) impinges onto a moving solid substrate, the actual dynamic contact angle indeed depends not only on the wetting speed and material constants of the contacting media, as in the so-called slip models, but also on the inlet velocity of the curtain, its height, and the angle between the falling curtain and the solid surface. In other words, for the same wetting speed the dynamic contact angle can be varied by manipulating the flow field and geometry near the moving contact line. The obtained results have important experimental implications: given that the dynamic contact angle is determined by the values of the surface tensions at the contact line and hence depends on the distributions of the surface parameters along the interfaces, which can be influenced by the flow field, one can use the overall flow conditions and the contact angle as a macroscopic multiparametric signal-response pair that probes the dynamics of the liquid-solid interface. This approach would allow one to investigate experimentally such properties of the interface as, for example, its equation of state and the rheological properties involved in the interface’s response to an external torque, and would help to measure its parameters, such as the coefficient of sliding friction, the surface-tension relaxation time, and so on.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Preferred structures in the surface pressure variability are investigated in and compared between two 100-year simulations of the Hadley Centre climate model HadCM3. In the first (control) simulation, the model is forced with pre-industrial carbon dioxide concentration (1×CO2) and in the second simulation the model is forced with doubled CO2 concentration (2×CO2). Daily winter (December-January-February) surface pressures over the Northern Hemisphere are analysed. The identification of preferred patterns is addressed using multivariate mixture models. For the control simulation, two significant flow regimes are obtained at 5% and 2.5% significance levels within the state space spanned by the leading two principal components. They show a high pressure centre over the North Pacific/Aleutian Islands associated with a low pressure centre over the North Atlantic, and its reverse. For the 2×CO2 simulation, no such behaviour is obtained. At higher-dimensional state space, flow patterns are obtained from both simulations. They are found to be significant at the 1% level for the control simulation and at the 2.5% level for the 2×CO2 simulation. Hence under CO2 doubling, regime behaviour in the large-scale wave dynamics weakens. Doubling greenhouse gas concentration affects both the frequency of occurrence of regimes and also the pattern structures. The less frequent regime becomes amplified and the more frequent regime weakens. The largest change is observed over the Pacific where a significant deepening of the Aleutian low is obtained under CO2 doubling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reaction of single crystals of benzoic and trans-cinnamic acids with 200 Torr pressure of ammonia gas in a sealed glass bulb at 20 degrees C generates the corresponding ammonium salts; there is no sign of any 1:2 adduct as has been reported previously for related systems. Isotopic substitution using ND3 has been used to aid identification of the products. Adipic acid likewise reacts with NH3 gas to form a product in which ammonium salts are formed at both carboxylic acid groups. Reaction of 0.5 Torr pressure of NO2 gas with single crystals of 9-methylanthracene and 9-anthracenemethanol in a flow system generates nitrated products where the nitro group appears to be attached at the 10-position, i.e. the position trans to the methyl or methoxy substituent on the central ring. Isotopic substitution using (NO2)-N-15 has been used to confirm the identity of the bands arising from the coordinated NO2 group. The products formed when single crystals of hydantoin are reacted with NO2 gas under similar conditions depend on the temperature of the reaction. At 20 degrees C, a nitrated product is formed, but at 65 degrees C this gives way to a product containing no nitro groups. The findings show the general applicability of infrared microspectroscopy to a study of gas-solid reactions of organic single crystals. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An efficient algorithm is presented for the solution of the equations of isentropic gas dynamics with a general convex gas law. The scheme is based on solving linearized Riemann problems approximately, and in more than one dimension incorporates operator splitting. In particular, only two function evaluations in each computational cell are required. The scheme is applied to a standard test problem in gas dynamics for a polytropic gas

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A numerical scheme is presented for the solution of the Euler equations of compressible flow of a real gas in a single spatial coordinate. This includes flow in a duct of variable cross-section, as well as flow with slab, cylindrical or spherical symmetry, as well as the case of an ideal gas, and can be useful when testing codes for the two-dimensional equations governing compressible flow of a real gas. The resulting scheme requires an average of the flow variables across the interface between cells, and this average is chosen to be the arithmetic mean for computational efficiency, which is in contrast to the usual “square root” averages found in this type of scheme. The scheme is applied with success to five problems with either slab or cylindrical symmetry and for a number of equations of state. The results compare favourably with the results from other schemes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An efficient numerical method is presented for the solution of the Euler equations governing the compressible flow of a real gas. The scheme is based on the approximate solution of a specially constructed set of linearised Riemann problems. An average of the flow variables across the interface between cells is required, and this is chosen to be the arithmetic mean for computational efficiency, which is in contrast to the usual square root averaging. The scheme is applied to a test problem for five different equations of state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An efficient algorithm is presented for the solution of the steady Euler equations of gas dynamics. The scheme is based on solving linearised Riemann problems approximately and in more than one dimension incorporates operator splitting. The scheme is applied to a standard test problem of flow down a channel containing a circular arc bump for three different mesh sizes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A non-uniform mesh scheme is presented for the computation of compressible flows governed by the Euler equations of gas dynamics. The scheme is based on flux-difference splitting and represents an extension of a similar scheme designed for uniform meshes. The numerical results demonstrate that little, if any, spurious oscillation occurs as a result of the non-uniformity of the mesh; and importantly, shock speeds are computed correctly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An efficient algorithm based on flux difference splitting is presented for the solution of the three-dimensional equations of isentropic flow in a generalised coordinate system, and with a general convex gas law. The scheme is based on solving linearised Riemann problems approximately and in more than one dimension incorporates operator splitting. The algorithm requires only one function evaluation of the gas law in each computational cell. The scheme has good shock capturing properties and the advantage of using body-fitted meshes. Numerical results are shown for Mach 3 flow of air past a circular cylinder. Furthermore, the algorithm also applies to shallow water flows by employing the familiar gas dynamics analogy.