61 resultados para endothelial protein C receptor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

G protein-coupled receptor kinases (GRKs) are regulatory enzymes involved in the modulation of seven-transmembrane-helix receptors. In order to develop specific inhibitors for these kinases, we synthesized and investigated peptide inhibitors derived from the sequence of the first intracellular loop of the beta(2)-adrenergic receptor. Introduction of changes in the sequence and truncation of N- and C-terminal amino acids increased the inhibitory potency by a factor of 40. These inhibitors not only inhibited the prototypical GRK2 but also GRK3 and GRK5. In contrast there was no inhibition of protein kinase C and protein kinase A even at the highest concentration tested. The peptide with the sequence AKFERLQTVTNYFITSE inhibited GRK2 with an IC50 of 0.6 mu M, GRK3 with 2.6 mu M and GRK5 with 1.6 mu M. The peptide inhibitors were non-competitive for receptor and ATP. These findings demonstrate that specific peptides can inhibit GRKs in the submicromolar range and suggest that a further decrease in size is possible without losing the inhibitory potency. (c) 2005 Published by Elsevier Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

G-protein-coupled receptors are desensitized by a two-step process. In a first step, G-protein-coupled receptor kinases (GRKs) phosphorylate agonist-activated receptors that subsequently bind to a second class of proteins, the arrestins. GRKs can be classified into three subfamilies, which have been implicated in various diseases. The physiological role(s) of GRKs have been difficult to study as selective inhibitors are not available. We have used SELEX (systematic evolution of ligands by exponential enrichment) to develop RNA aptamers that potently and selectively inhibit GRK2. This process has yielded an aptamer, C13, which bound to GRK2 with a high affinity and inhibited GRK2-catalyzed rhodopsin phosphorylation with an IC50 of 4.1 nM. Phosphorylation of rhodopsin catalyzed by GRK5 was also inhibited, albeit with 20-fold lower potency (IC50 of 79 nM). Furthermore, C13 reveals significant specificity, since almost no inhibitory activity was detectable testing it against a panel of 14 other kinases. The aptamer is two orders of magnitude more potent than the best GRK2 inhibitors described previously and shows high selectivity for the GRK family of protein kinases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examined the activation of the p38 mitogen-activated protein kinase (p38-MAPK) pathway by the G protein-coupled receptor agonists, endothelin-1 and phenylephrine in primary cultures of cardiac myocytes from neonatal rat hearts. Both agonists increased the phosphorylation (activation) of p38-MAPK by approximately 12-fold. A p38-MAPK substrate, MAPK-activated protein kinase 2 (MAPKAPK2), was activated approximately fourfold and 10 microM SB203580, a p38-MAPK inhibitor, abolished this activation. Phosphorylation of the MAPKAPK2 substrate, heat shock protein 25/27, was also increased. Using selective inhibitors, activation of the p38-MAPK pathway by endothelin-1 was shown to involve protein kinase C but not Gi/Go nor the extracellularly responsive kinase (ERK) pathway. SB203580 failed to inhibit the morphological changes associated with cardiac myocyte hypertrophy induced by endothelin-1 or phenylephrine between 4 and 24 h. However, it decreased the myofibrillar organization and cell profile at 48 h. In contrast, inhibition of the ERK cascade with PD98059 prevented the increase in myofibrillar organization but not cell profile. These data are not consistent with a role for the p38-MAPK pathway in the immediate induction of the morphological changes of hypertrophy but suggest that it may be necessary over a longer period to maintain the response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the ability of phenylephrine (PE), an alpha-adrenergic agonist and promoter of hypertrophic growth in the ventricular myocyte, to activate the three best-characterized mitogen-activated protein kinase (MAPK) subfamilies, namely p38-MAPKs, SAPKs/JNKs (i.e. stress-activated protein kinases/c-Jun N-terminal kinases) and ERKs (extracellularly responsive kinases), in perfused contracting rat hearts. Perfusion of hearts with 100 microM PE caused a rapid (maximal at 10 min) 12-fold activation of two p38-MAPK isoforms, as measured by subsequent phosphorylation of a p38-MAPK substrate, recombinant MAPK-activated protein kinase 2 (MAPKAPK2). This activation coincided with phosphorylation of p38-MAPK. Endogenous MAPKAPK2 was activated 4-5-fold in these perfusions and this was inhibited completely by the p38-MAPK inhibitor, SB203580 (10 microM). Activation of p38-MAPK and MAPKAPK2 was also detected in non-contracting hearts perfused with PE, indicating that the effects were not dependent on the positive inotropic/chronotropic properties of the agonist. Although SAPKs/JNKs were also rapidly activated, the activation (2-3-fold) was less than that of p38-MAPK. The ERKs were activated by perfusion with PE and the activation was at least 50% of that seen with 1 microM PMA, the most powerful activator of the ERKs yet identified in cardiac myocytes. These results indicate that, in addition to the ERKs, two MAPK subfamilies, whose activation is more usually associated with cellular stresses, are activated by the Gq/11-protein-coupled receptor (Gq/11PCR) agonist, PE, in whole hearts. These data indicate that Gq/11PCR agonists activate multiple MAPK signalling pathways in the heart, all of which may contribute to the overall response (e.g. the development of the hypertrophic phenotype).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The small G protein Ras has been implicated in hypertrophy of cardiac myocytes. We therefore examined the activation (GTP loading) of Ras by the following hypertrophic agonists: phorbol 12-myristate 13-acetate (PMA), endothelin-1 (ET-1), and phenylephrine (PE). All three increased Ras.GTP loading by 10-15-fold (maximal in 1-2 min), as did bradykinin. Other G protein-coupled receptor agonists (e.g. angiotensin II, carbachol, isoproterenol) were less effective. Activation of Ras by PMA, ET-1, or PE was reduced by inhibition of protein kinase C (PKC), and that induced by ET-1 or PE was partly sensitive to pertussis toxin. 8-(4-Chlorophenylthio)-cAMP (CPT-cAMP) did not inhibit Ras.GTP loading by PMA, ET-1, or PE. The association of Ras with c-Raf protein was increased by PMA, ET-1, or PE, and this was inhibited by CPT-cAMP. However, only PMA and ET-1 increased Ras-associated mitogen-activated protein kinase kinase 1-activating activity, and this was decreased by PKC inhibition, pertussis toxin, and CPT-cAMP. PMA caused the rapid appearance of phosphorylated (activated) extracellular signal-regulated kinase in the nucleus, which was inhibited by a microinjected neutralizing anti-Ras antibody. We conclude that PKC- and Gi-dependent mechanisms mediate the activation of Ras in myocytes and that Ras activation is required for stimulation of extracellular signal-regulated kinase by PMA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cardiac myocyte hypertrophy involves changes in cell structure and alterations in protein expression regulated at both the transcriptional and translational levels. Hypertrophic G protein-coupled receptor (GPCR) agonists such as endothelin-(ET-1) and phenylephrine stimulate a number of protein kinase cascades in the heart. Mitogen-activated protein kinase (MAPK) cascades stimulated include the extracellularly regulated kinase cascade, the stress-activated protein kinase/c-Jun N-terminal kinase cascade, and the p38 MAPK cascade. All 3 pathways have been implicated in hypertrophy, but recent ex vivo evidence also suggests that there may be additional effects on cell survival. ET-1 and phenylephrine also stimulate the protein kinase B pathway, and this may be involved in the regulation of protein synthesis by these agonists. Thus, protein kinase-mediated signaling may be important in the regulation of the development of myocyte hypertrophy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The GPR30, a former orphan GPCR, is a putative membrane estrogen receptor that can activate rapid signaling pathways such as extracellular regulated kinase (ERK) in a variety of cells and may contribute to estrogen's effects in the central nervous system. The distribution of GPR30 in the limbic system predicts a role for this receptor in the regulation of learning and memory and anxiety by estrogens. Though acute G-1 treatment is reported to be anxiogenic in ovariectomised female mice and in gonadally intact male mice, the effect of GPR30 activation is unknown in gonadectomised male mice. In this study, we show that an acute administration of G-1 to gonadectomised male mice, but not female mice, was anxiolytic on an elevated plus maze task, without affecting locomotor activity. In addition, though G-1 treatment did not regulate ERK, it was associated with increased estrogen receptor (ER)alpha phosphorylation in the ventral, but not dorsal, hippocampus of males. In the female, G-1 increased the ERK activation solely in the dorsal hippocampus, independent of state anxiety. This is the first study to report an anxiolytic effect of GPR30 activation in male mice, in a rapid time frame that is commensurate with non-genomic signaling by estrogen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Throughout the central nervous system a dominant form of inhibition of neurotransmitter release from presynaptic terminals is mediated by G-protein-coupled receptors (GPCRs). Neurotransmitter release is typically induced by action potentials (APs), but can also occur spontaneously. Presynaptic inhibition by GPCRs has been associated with modulation of voltage-dependent ion channels. However, electrophysiological recordings of spontaneous, AP-independent (so-called ‘miniature’) postsynaptic events reveal an additional, important form of GPCR-mediated presynaptic inhibition, distinct from effects on ionic conductances and consistent with a direct action on the vesicle release machinery. Recent studies suggest that such miniature events might be of physiological relevance not only in signalling but also in development. In the cerebellum, neurotransmitter release onto Purkinje cells occurs by AP-dependent and AP-independent pathways. Here, I focus on inhibitory synapses between interneurons and Purkinje cells, which are subject to strong, identifiable regulation by endogenous GPCR agonists, to consider mechanisms of GPCR-mediated presynaptic inhibition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The enzymatic activity of peptidases must be tightly regulated to prevent uncontrolled hydrolysis of peptide bonds, which could have devastating effects in biological systems. Peptidases are often generated as inactive propeptidases, secreted with endogenous inhibitors or they are compartmentalized. Propeptidases become active after proteolytic removal of N-terminal activation peptides by other peptidases. Some peptidases only become active towards substrates only at certain pHs, thus confining activity to specific compartments or conditions. This review discusses the different roles proteolysis plays in regulating G protein-coupled receptors (GPCRs). At the cell-surface, certain GPCRs are regulated by the hydrolytic inactivation of bioactive peptides by membrane-anchored peptidases, which prevents signaling. Conversely, cell-surface peptidases can also generate bioactive peptides that directly activate GPCRs. Alternatively, cell-surface peptidases activated by GPCRs, can generate bioactive peptides to cause transactivation of receptor tyrosine kinases, thereby promoting signaling. Certain peptidases can signals directly to cells, by cleaving GPCR to initiate intracellular signaling cascades. Intracellular peptidases also regulate GPCRs; lysosomal peptidases destroy GPCRs in lysosomes to permanently terminate signaling and mediate downregulation; endosomal peptidases cleave internalized peptide agonists to regulate GPCR recycling, resensitization and signaling; and soluble intracellular peptidases also participate in GPCR function by regulating the ubiquitination state of GPCRs, thereby altering GPCR signaling and fate. Although the use of peptidase inhibitors has already brought success in the treatment of diseases such as hypertension, the discovery of new regulatory mechanisms involving proteolysis that control GPCRs may provide additional targets to modulate dysregulated GPCR signaling in disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extracellular signal-regulated kinases 1/2 (ERK1/2) and their substrates, p90 ribosomal S6 kinases (RSKs), phosphorylate different transcription factors, contributing differentially to transcriptomic profiles. In cardiomyocytes, ERK1/2 are required for >70% of the transcriptomic response to endothelin-1. Here, we investigated the role of RSKs in the transcriptomic responses to Gq protein-coupled receptor agonists, endothelin-1, phenylephrine (generic α1-adrenergic receptor agonist) and A61603 (α1A-adrenergic receptor selective). Phospho-ERK1/2 and phospho-RSKs appeared in cardiomyocyte nuclei within 2-3 min of stimulation (endothelin-1>a61603≈phenylephrine). All agonists increased nuclear RSK2, but only endothelin-1 increased nuclear RSK1 content. PD184352 (inhibits ERK1/2 activation) and BI-D1870 (inhibits RSKs) were used to dissect the contribution of RSKs to the endothelin-1-responsive transcriptome. Of 213 RNAs upregulated at 1 h, 51% required RSKs for upregulation whereas 29% required ERK1/2 but not RSKs. The transcriptomic response to phenylephrine overlapped with, but was not identical to, endothelin-1. As with endothelin-1, PD184352 inhibited upregulation of most phenylephrine-responsive transcripts, but the greater variation in effects of BI-D1870 suggests that differential RSK signalling influences global gene expression. A61603 induced similar changes in RNA expression in cardiomyocytes as phenylephrine, indicating that the signal was mediated largely through α1A-adrenergic receptors. A61603 also increased expression of immediate early genes in perfused adult rat hearts and, as in cardiomyocytes, upregulation of the majority of genes was inhibited by PD184352. PD184352 or BI-D1870 prevented the increased surface area induced by endothelin-1 in cardiomyocytes. Thus, RSKs play a significant role in regulating cardiomyocyte gene expression and hypertrophy in response to Gq protein-coupled receptor stimulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In ovariectomized rats, administration of estradiol, or selective estrogen receptor agonists that activate either the alpha or beta isoforms, have been shown to enhance spatial cognition on a variety of learning and memory tasks, including those that capitalize on the preference of rats to seek out novelty. Although the effects of the putative estrogen G-protein-coupled receptor 30 (GPR30) on hippocampus-based tasks have been reported using food-motivated tasks, the effects of activation of GPR30 receptors on tasks that depend on the preference of rats to seek out spatial novelty remain to be determined. Therefore, the aim of the current study was to determine if short-term treatment of ovariectomized rats with G-1, an agonist for GPR30, would mimic the effects on spatial recognition memory observed following short-term estradiol treatment. In Experiment 1, ovariectomized rats treated with a low dose (1mug) of estradiol 48h and 24h prior to the information trial of a Y-maze task exhibited a preference for the arm associated with the novel environment on the retention trial conducted 48h later. In Experiment 2, treatment of ovariectomized rats with G-1 (25mug) 48h and 24h prior to the information trial of a Y-maze task resulted in a greater preference for the arm associated with the novel environment on the retention trial. Collectively, the results indicated that short-term treatment of ovariectomized rats with a GPR30 agonist was sufficient to enhance spatial recognition memory, an effect that also occurred following short-term treatment with a low dose of estradiol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human D-2short (D-2S) dopamine receptor has been expressed together with the G proteins Gi2 and Go in insect cells using the baculovirus system. Levels of receptor were determined using [H-3]spiperone binding. Levels of G protein heterotrimer were determined using quantitative Western blot and using [S-35]GTPgammaS saturation binding experiments. Levels of the receptor and G protein and the receptor/G protein ratio were similar in the two preparations. Stimulation of [S-35]GTPgammaS binding by a range of agonists occurred with higher relative efficacy and in some cases higher potency in the preparation expressing Go, indicating that interaction of the D-2S receptor is more efficient with this G protein. The effects of various G protein-selective agents on 10,11-dihydroxy-N-n-propylnorapomorphine ([H-3]NPA) binding were used to examine the receptor/G protein complex in the two preparations. Suramin inhibited [H-3]NPA binding with slightly higher potency in the Gi2 preparation, whereas GppNHp inhibited [H-3]NPA binding with greater potency (similar to6-fold) in the Go preparation. This may imply that the G protein is more readily activated in the D-2S/Go preparation. [H-3]Spiperone binding occurred with an increased B-max in the presence of suramin in the Go preparation but not in the Gi2 preparation, suggesting a higher affinity interaction between the free receptor and this G protein. It is concluded that the higher efficiency activation of Go by the D-2S receptor may be a function of higher affinity receptor/G protein interaction as well as a greater ability to activate the G protein. (C) 2003 Elsevier Science Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Homologous desensitization of beta(2)-adrenergic and other G-protein-coupled receptors is a two-step process. After phosphorylation of agonist-occupied receptors by G-protein-coupled receptor kinases, they bind beta-arrestins, which triggers desensitization and internalization of the receptors. Because it is not known which regions of the receptor are recognized by beta-arrestins, we have investigated beta-arrestin interaction and internalization of a set of mutants of the human beta(2)-adrenergic receptor. Mutation of the four serine/threonine residues between residues 355 and 364 led to the loss of agonist-induced receptor-beta-arrestin2 interaction as revealed by fluorescence resonance energy transfer (FRET), translocation of beta-arrestin2 to the plasma membrane, and receptor internalization. Mutation of all seven serine/threonine residues distal to residue 381 did not affect agonist-induced receptor internalization and beta-arrestin2 translocation. A beta(2)-adrenergic receptor truncated distal to residue 381 interacted normally with beta-arrestin2, whereas its ability to internalize in an agonist-dependent manner was compromised. A similar impairment of internalization was observed when only the last eight residues of the C terminus were deleted. Our experiments show that the C terminus distal to residue 381 does not affect the initial interaction between receptor and beta-arrestin, but its last eight amino acids facilitate receptor internalization in concert with beta-arrestin2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Platelet endothelial cell adhesion molecule-1 (PECAM-1), an immunoreceptor tyrosine-based inhibitory motif containing receptor, plays diverse and apparently contradictory roles in regulating the response of platelets to stimuli; inhibiting platelet response to immunoreceptor tyrosine-based activation motif and G protein-coupled receptor signalling following stimulation with collagen, adenosine diphosphate, and thrombin, as well as enhancing integrin outside-in signalling. These dual, and opposing, roles suggest an important and complex role for PECAM-1 in orchestrating platelet response to vascular damage. Indeed, during thrombus formation, the influence of PECAM-1 on the multiple signalling pathways combines leading to a relatively large inhibitory effect on thrombus formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanisms that arrest G-protein-coupled receptor (GPCR) signaling prevent uncontrolled stimulation that could cause disease. Although uncoupling from heterotrimeric G-proteins, which transiently arrests signaling, is well described, little is known about the mechanisms that permanently arrest signaling. Here we reported on the mechanisms that terminate signaling by protease-activated receptor 2 (PAR(2)), which mediated the proinflammatory and nociceptive actions of proteases. Given its irreversible mechanism of proteolytic activation, PAR(2) is a model to study the permanent arrest of GPCR signaling. By immunoprecipitation and immunoblotting, we observed that activated PAR(2) was mono-ubiquitinated. Immunofluorescence indicated that activated PAR(2) translocated from the plasma membrane to early endosomes and lysosomes where it was degraded, as determined by immunoblotting. Mutant PAR(2) lacking intracellular lysine residues (PAR(2)Delta14K/R) was expressed at the plasma membrane and signaled normally but was not ubiquitinated. Activated PAR(2) Delta14K/R internalized but was retained in early endosomes and avoided lysosomal degradation. Activation of wild type PAR(2) stimulated tyrosine phosphorylation of the ubiquitin-protein isopeptide ligase c-Cbl and promoted its interaction with PAR(2) at the plasma membrane and in endosomes in an Src-dependent manner. Dominant negative c-Cbl lacking the ring finger domain inhibited PAR(2) ubiquitination and induced retention in early endosomes, thereby impeding lysosomal degradation. Although wild type PAR(2) was degraded, and recovery of agonist responses required synthesis of new receptors, lysine mutation and dominant negative c-Cbl impeded receptor ubiquitination and degradation and allowed PAR(2) to recycle and continue to signal. Thus, c-Cbl mediated ubiquitination and lysosomal degradation of PAR(2) to irrevocably terminate signaling by this and perhaps other GPCRs.