62 resultados para diffraction gratings


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we consider the scattering of a plane acoustic or electromagnetic wave by a one-dimensional, periodic rough surface. We restrict the discussion to the case when the boundary is sound soft in the acoustic case, perfectly reflecting with TE polarization in the EM case, so that the total field vanishes on the boundary. We propose a uniquely solvable first kind integral equation formulation of the problem, which amounts to a requirement that the normal derivative of the Green's representation formula for the total field vanish on a horizontal line below the scattering surface. We then discuss the numerical solution by Galerkin's method of this (ill-posed) integral equation. We point out that, with two particular choices of the trial and test spaces, we recover the so-called SC (spectral-coordinate) and SS (spectral-spectral) numerical schemes of DeSanto et al., Waves Random Media, 8, 315-414 1998. We next propose a new Galerkin scheme, a modification of the SS method that we term the SS* method, which is an instance of the well-known dual least squares Galerkin method. We show that the SS* method is always well-defined and is optimally convergent as the size of the approximation space increases. Moreover, we make a connection with the classical least squares method, in which the coefficients in the Rayleigh expansion of the solution are determined by enforcing the boundary condition in a least squares sense, pointing out that the linear system to be solved in the SS* method is identical to that in the least squares method. Using this connection we show that (reflecting the ill-posed nature of the integral equation solved) the condition number of the linear system in the SS* and least squares methods approaches infinity as the approximation space increases in size. We also provide theoretical error bounds on the condition number and on the errors induced in the numerical solution computed as a result of ill-conditioning. Numerical results confirm the convergence of the SS* method and illustrate the ill-conditioning that arises.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a Nystr¨om/product integration method for a class of second kind integral equations on the real line which arise in problems of two-dimensional scalar and elastic wave scattering by unbounded surfaces. Stability and convergence of the method is established with convergence rates dependent on the smoothness of components of the kernel. The method is applied to the problem of acoustic scattering by a sound soft one-dimensional surface which is the graph of a function f, and superalgebraic convergence is established in the case when f is infinitely smooth. Numerical results are presented illustrating this behavior for the case when f is periodic (the diffraction grating case). The Nystr¨om method for this problem is stable and convergent uniformly with respect to the period of the grating, in contrast to standard integral equation methods for diffraction gratings which fail at a countable set of grating periods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider a two-dimensional problem of scattering of a time-harmonic electromagnetic plane wave by an infinite inhomogeneous conducting or dielectric layer at the interface between semi-infinite homogeneous dielectric half-spaces. The magnetic permeability is assumed to be a fixed positive constant. The material properties of the media are characterized completely by an index of refraction, which is a bounded measurable function in the layer and takes positive constant values above and below the layer, corresponding to the homogeneous dielectric media. In this paper, we examine only the transverse magnetic (TM) polarization case. A radiation condition appropriate for scattering by infinite rough surfaces is introduced, a generalization of the Rayleigh expansion condition for diffraction gratings. With the help of the radiation condition the problem is reformulated as an equivalent mixed system of boundary and domain integral equations, consisting of second-kind integral equations over the layer and interfaces within the layer. Assumptions on the variation of the index of refraction in the layer are then imposed which prove to be sufficient, together with the radiation condition, to prove uniqueness of solution and nonexistence of guided wave modes. Recent, general results on the solvability of systems of second kind integral equations on unbounded domains establish existence of solution and continuous dependence in a weighted norm of the solution on the given data. The results obtained apply to the case of scattering by a rough interface between two dielectric media and to many other practical configurations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The problem of scattering of time-harmonic acoustic waves by an inhomogeneous fluid layer on a rigid plate in R2 is considered. The density is assumed to be unity in the media: within the layer the sound speed is assumed to be an arbitrary bounded measurable function. The problem is modelled by the reduced wave equation with variable wavenumber in the layer and a Neumann condition on the plate. To formulate the problem and prove uniqueness of solution a radiation condition appropriate for scattering by infinite rough surfaces is introduced, a generalization of the Rayleigh expansion condition for diffraction gratings. With the help of the radiation condition the problem is reformulated as a system of two second kind integral equations over the layer and the plate. Under additional assumptions on the wavenumber in the layer, uniqueness of solution is proved and the nonexistence of guided wave solutions of the homogeneous problem established. General results on the solvability of systems of integral equations on unbounded domains are used to establish existence and continuous dependence in a weighted norm of the solution on the given data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We prove unique existence of solution for the impedance (or third) boundary value problem for the Helmholtz equation in a half-plane with arbitrary L∞ boundary data. This problem is of interest as a model of outdoor sound propagation over inhomogeneous flat terrain and as a model of rough surface scattering. To formulate the problem and prove uniqueness of solution we introduce a novel radiation condition, a generalization of that used in plane wave scattering by one-dimensional diffraction gratings. To prove existence of solution and a limiting absorption principle we first reformulate the problem as an equivalent second kind boundary integral equation to which we apply a form of Fredholm alternative, utilizing recent results on the solvability of integral equations on the real line in [5].

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We describe some recent advances in the numerical solution of acoustic scattering problems. A major focus of the paper is the efficient solution of high frequency scattering problems via hybrid numerical-asymptotic boundary element methods. We also make connections to the unified transform method due to A. S. Fokas and co-authors, analysing particular instances of this method, proposed by J. A. De-Santo and co-authors, for problems of acoustic scattering by diffraction gratings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advances made over the past decade in structure determination from powder diffraction data are reviewed with particular emphasis on algorithmic developments and the successes and limitations of the technique. While global optimization methods have been successful in the solution of molecular crystal structures, new methods are required to make the solution of inorganic crystal structures more routine. The use of complementary techniques such as NMR to assist structure solution is discussed and the potential for the combined use of X-ray and neutron diffraction data for structure verification is explored. Structures that have proved difficult to solve from powder diffraction data are reviewed and the limitations of structure determination from powder diffraction data are discussed. Furthermore, the prospects of solving small protein crystal structures over the next decade are assessed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The simulated annealing approach to structure solution from powder diffraction data, as implemented in the DASH program, is easily amenable to parallelization at the individual run level. Very large scale increases in speed of execution can therefore be achieved by distributing individual DASH runs over a network of computers. The GDASH program achieves this by packaging DASH in a form that enables it to run under the Univa UD Grid MP system, which harnesses networks of existing computing resources to perform calculations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The simulated annealing approach to structure solution from powder diffraction data, as implemented in the DASH program, is easily amenable to parallelization at the individual run level. Modest increases in speed of execution can therefore be achieved by executing individual DASH runs on the individual cores of CPUs.