37 resultados para copyright duration
Resumo:
Changes to the behaviour of subseasonal precipitation extremes and active-break cycles of the Indian summer monsoon are assessed in this study using pre-industrial and 2 × CO2 integrations of the Hadley Centre coupled model HadCM3, which is able to simulate the monsoon seasonal cycle reasonably. At 2 × CO2, mean summer rainfall increases slightly, especially over central and northern India. The mean intensity of daily precipitation during the monsoon is found to increase, consistent with fewer wet days, and there are increases to heavy rain events beyond changes in the mean alone. The chance of reaching particular thresholds of heavy rainfall is found to approximately double over northern India, increasing the likelihood of damaging floods on a seasonal basis. The local distribution of such projections is uncertain, however, given the large spread in mean monsoon rainfall change and associated extremes amongst even the most recent coupled climate models. The measured increase of the heaviest precipitation events over India is found to be broadly in line with the degree of atmospheric warming and associated increases in specific humidity, lending a degree of predictability to changes in rainfall extremes. Active-break cycles of the Indian summer monsoon, important particularly due to their effect on agricultural output, are shown to be reasonably represented in HadCM3, in particular with some degree of northward propagation. We note an intensification of both active and break events, particularly when measured against the annual cycle, although there is no suggestion of any change to the duration or likelihood of monsoon breaks. Copyright © 2009 Royal Meteorological Society
Resumo:
Current models of Pleistocene fluvial system development and dynamics are assessed from the perspective of European Lower and Middle Palaeolithic stone tool assemblages recovered from fluvial secondary contexts. Fluvial activity is reviewed both in terms of Milankovitch-scale processes across the glacial/interglacial cycles of the Middle and Late Pleistocene, and in response to sub-Milankovitch scale, high-frequency, low-magnitude climatic oscillations. The chronological magnitude of individual phases of fluvial activity is explored in terms of radiocarbon-dated sequences from the Late Glacial and early Holocene periods. It is apparent that fluvial activity is associated with periods of climatic transition, both high and low magnitude, although system response is far more universal in the case of the high magnitude glacial/ interglacial transitions. Current geochronological tools do not permit the development of high-resolution sequences for Middle Pleistocene sediments, while localised erosion and variable system responses do not facilitate direct comparison with the ice core records. However, Late Glacial and early Holocene sequences indicate that individual fluvial activity phases are relatively brief in duration (e.g. 10(2) and 10(3) yr). From an archaeological perspective, secondary context assemblages can only be interpreted in terms of a floating geochronology, although the data also permit a reinvestigation of the problems of artefact reworking. Copyright (c) 2005 John Wiley I Sons, Ltd.
Resumo:
Cash retention is a common means of protecting an employer from a contractor's insolvency as well as ensuring that contractors finish the work that they start. Similarly, contractors withhold part of payments due to their sub-contractors. Larger contracts tend to be subjected to smaller rates of retention. By calculating the cost of retention as an amount per year of a contract, it is shown that retention is far more expensive for firms whose work consists of short contracts. The extra cost is multiplied when the final payment is delayed, as it often is for those whose work takes place at the beginning of a project. This may explain why it is that main contractors are a lot less interested than sub-contractors in alternatives to cash retention, such as retention bonds
Resumo:
Architects and engineers depend on copyright law to protect their original works. Copyright protection is automatic once a tangible medium of expression in any form of an innovative material, conforming the Copyright Designs and Patents Act 1988, is created. In terms of architectural works, they are protected as literary works (design drawings and plans) and as artistic works (the building or model of the building). The case law on the concept of “originality” however discloses that it may be difficult for certain artistic works of architecture to achieve copyright protection. Although copyright law provides automatic protection to all original architectural plans, the limitation is that it only protects the expression of ideas but not the ideas themselves. The purpose of this research is to explore how effective the UK’s copyright law regime is for protecting the rights and interests of architects in their works. In addition, the United States system of copyright law will be analysed to determine whether it provides more effective protection for architects and engineers with regard to architectural works. The key objective in carrying out this comparison is to compare and contrast the extent to which the two systems protect the rights and interests of architects against copyright infringement. This comparative analysis concludes by considering the possibility of copyright law reform in the UK.
Resumo:
The validity of convective parametrization breaks down at the resolution of mesoscale models, and the success of parametrized versus explicit treatments of convection is likely to depend on the large-scale environment. In this paper we examine the hypothesis that a key feature determining the sensitivity to the environment is whether the forcing of convection is sufficiently homogeneous and slowly varying that the convection can be considered to be in equilibrium. Two case studies of mesoscale convective systems over the UK, one where equilibrium conditions are expected and one where equilibrium is unlikely, are simulated using a mesoscale forecasting model. The time evolution of area-average convective available potential energy and the time evolution and magnitude of the timescale of convective adjustment are consistent with the hypothesis of equilibrium for case 1 and non-equilibrium for case 2. For each case, three experiments are performed with different partitionings between parametrized and explicit convection: fully parametrized convection, fully explicit convection and a simulation with significant amounts of both. In the equilibrium case, bulk properties of the convection such as area-integrated rain rates are insensitive to the treatment of convection. However, the detailed structure of the precipitation field changes; the simulation with parametrized convection behaves well and produces a smooth field that follows the forcing region, and the simulation with explicit convection has a small number of localized intense regions of precipitation that track with the mid-levelflow. For the non-equilibrium case, bulk properties of the convection such as area-integrated rain rates are sensitive to the treatment of convection. The simulation with explicit convection behaves similarly to the equilibrium case with a few localized precipitation regions. In contrast, the cumulus parametrization fails dramatically and develops intense propagating bows of precipitation that were not observed. The simulations with both parametrized and explicit convection follow the pattern seen in the other experiments, with a transition over the duration of the run from parametrized to explicit precipitation. The impact of convection on the large-scaleflow, as measured by upper-level wind and potential-vorticity perturbations, is very sensitive to the partitioning of convection for both cases. © Royal Meteorological Society, 2006. Contributions by P. A. Clark and M. E. B. Gray are Crown Copyright.
Resumo:
Europe's widely distributed climate modelling expertise, now organized in the European Network for Earth System Modelling (ENES), is both a strength and a challenge. Recognizing this, the European Union's Program for Integrated Earth System Modelling (PRISM) infrastructure project aims at designing a flexible and friendly user environment to assemble, run and post-process Earth System models. PRISM was started in December 2001 with a duration of three years. This paper presents the major stages of PRISM, including: (1) the definition and promotion of scientific and technical standards to increase component modularity; (2) the development of an end-to-end software environment (graphical user interface, coupling and I/O system, diagnostics, visualization) to launch, monitor and analyse complex Earth system models built around state-of-art community component models (atmosphere, ocean, atmospheric chemistry, ocean bio-chemistry, sea-ice, land-surface); and (3) testing and quality standards to ensure high-performance computing performance on a variety of platforms. PRISM is emerging as a core strategic software infrastructure for building the European research area in Earth system sciences. Copyright (c) 2005 John Wiley & Sons, Ltd.
Resumo:
Copyright protects the rights and interests of authors on their original works of authorship such as literary, dramatic, musical, artistic, and certain other intellectual works including architectural works and designs. It is automatic once a tangible medium of expression in any form of an innovative material, which conforms the Copyright Designs and Patents Act 1988 (CDPA 1988), is created. This includes the building, the architectural plans and drawings. There is no official copyright registry, no requirements on any fees need to be paid and they can be published or unpublished materials. Copyrights owners have the rights to control the reproduction, display, publication, and even derivation of the design. However, there are limitations on the rights of the copyright owners concerning copyrights infringements. Infringement of copyright is an unauthorised violation of the exclusive rights of the copyright author. Architects and engineers depend on copyright law to protect their works and design. Copyrights are protected on the arrangements of spaces and elements as well as the overall form of the architectural design. However, it does not cover the design of functional elements and standard features. Although copyright law provides automatic protection to all original architectural plans, the limitation is that copyright only protects the expression of ideas but not the ideas themselves. It can be argued that architectural drawings and design, including models are recognised categories of artistic works which are protected under the copyright law. This research investigates to what extent copyrights protect the rights and interests of the designers on architectural works and design.
Resumo:
The objective of this study was to quantify the effect of photoperiod on the duration from vine (shoot) emergence to flowering in white or Guinea yam (Dioscorea rotundata). The duration from vine emergence to flowering in two clonal varieties of yam (TDr 131 and TDr 99-9) was recorded at 10 different sowing dates/locations in Nigeria. Durations to flowering varied from 40 to > 88 days. Mean daily temperature and photoperiod between vine emergence and flowering varied from 25 to 27 degrees C and 13.1 to 13.4 h day(-1), respectively. Both clones had similar responses to temperature, with base and optimum temperatures of 12 and 25-27 degrees C, respectively. Thermal durations to flowering were strongly related (r(2) > 0.75-0.83) to absolute photoperiod (h) at vine emergence as well as to rate of change of photoperiod (s day(-1)) at vine emergence. The response to absolute photoperiod suggests that white yams are quantitative LDPs, flowering sooner in long than short days. Yams also flowered earlier when the rate of change of photoperiod was positive but small, or was negative. It is suggested that yams may use a combination of photoperiod and rate of change in order to fine tune flowering time. (c) 2006 Elsevier B.V. All rights reserved.