16 resultados para choroidal thickness
Resumo:
The problem of water wave scattering by a circular ice floe, floating in fluid of finite depth, is formulated and solved numerically. Unlike previous investigations of such situations, here we allow the thickness of the floe (and the fluid depth) to vary axisymmetrically and also incorporate a realistic non-zero draught. A numerical approximation to the solution of this problem is obtained to an arbitrary degree of accuracy by combining a Rayleigh–Ritz approximation of the vertical motion with an appropriate variational principle. This numerical solution procedure builds upon the work of Bennets et al. (2007, J. Fluid Mech., 579, 413–443). As part of the numerical formulation, we utilize a Fourier cosine expansion of the azimuthal motion, resulting in a system of ordinary differential equations to solve in the radial coordinate for each azimuthal mode. The displayed results concentrate on the response of the floe rather than the scattered wave field and show that the effects of introducing the new features of varying floe thickness and a realistic draught are significant.
Resumo:
Sensory perception has been found to change during ageing. The perception of mouth feel by older adults, and the role of ageing on the sensory perception of texture attributes is uncertain. . This study investigated perception of the textural attributes of thickness, mouth-coating and mouth-drying, in the context of dairy beverages, by older and younger adults. Just noticeable differences (JND) of a starch thickener and for cream concentration within milk were established for thickness and mouth-coating perception, finding no age-related differences between participant groups. Mouth-drying was assessed through the directional paired comparison of a mouth-drying milk beverage to a skimmed milk sample. The older adults were found to be more sensitive to mouth-drying (p=0.03) than the younger adults. This study found no age-related decline in texture perception with older adults finding perception of some attributes such as mouth-drying enhanced by ageing.
Resumo:
Recent evidence suggests that immobilization of the upper limb for 2–3 weeks induces changes in cortical thickness as well as motor performance. In constraint induced (CI) therapy, one of the most effective interventions for hemiplegia, the non-paretic arm is constrained to enforce the use of the paretic arm in the home setting. With the present study we aimed to explore whether non-paretic arm immobilization in CI therapy induces structural changes in the non-lesioned hemisphere, and how these changes are related to treatment benefit. 31 patients with chronic hemiparesis participated in CI therapy with (N = 14) and without (N = 17) constraint. Motor ability scores were acquired before and after treatment. Diffusion tensor imaging (DTI) data was obtained prior to treatment. Cortical thickness was measured with the Freesurfer software. In both groups cortical thickness in the contralesional primary somatosensory cortex increased and motor function improved with the intervention. However the cortical thickness change was not associated with the magnitude of motor function improvement. Moreover, the treatment effect and the cortical thickness change were not significantly different between the constraint and the non-constraint groups. There was no correlation between fractional anisotropy changes in the non-lesioned hemisphere and treatment outcome. CI therapy induced cortical thickness changes in contralesional sensorimotor regions, but this effect does not appear to be driven by the immobilization of the non-paretic arm, as indicated by the absence of differences between the constraint and the non-constraint groups. Our data does not suggest that the arm immobilization used in CI therapy is associated with noticeable cortical thinning.
Resumo:
[1] Decadal hindcast simulations of Arctic Ocean sea ice thickness made by a modern dynamic-thermodynamic sea ice model and forced independently by both the ERA-40 and NCEP/NCAR reanalysis data sets are compared for the first time. Using comprehensive data sets of observations made between 1979 and 2001 of sea ice thickness, draft, extent, and speeds, we find that it is possible to tune model parameters to give satisfactory agreement with observed data, thereby highlighting the skill of modern sea ice models, though the parameter values chosen differ according to the model forcing used. We find a consistent decreasing trend in Arctic Ocean sea ice thickness since 1979, and a steady decline in the Eastern Arctic Ocean over the full 40-year period of comparison that accelerated after 1980, but the predictions of Western Arctic Ocean sea ice thickness between 1962 and 1980 differ substantially. The origins of differing thickness trends and variability were isolated not to parameter differences but to differences in the forcing fields applied, and in how they are applied. It is argued that uncertainty, differences and errors in sea ice model forcing sets complicate the use of models to determine the exact causes of the recently reported decline in Arctic sea ice thickness, but help in the determination of robust features if the models are tuned appropriately against observations.
Resumo:
A stand-alone sea ice model is tuned and validated using satellite-derived, basinwide observations of sea ice thickness, extent, and velocity from the years 1993 to 2001. This is the first time that basin-scale measurements of sea ice thickness have been used for this purpose. The model is based on the CICE sea ice model code developed at the Los Alamos National Laboratory, with some minor modifications, and forcing consists of 40-yr ECMWF Re-Analysis (ERA-40) and Polar Exchange at the Sea Surface (POLES) data. Three parameters are varied in the tuning process: Ca, the air–ice drag coefficient; P*, the ice strength parameter; and α, the broadband albedo of cold bare ice, with the aim being to determine the subset of this three-dimensional parameter space that gives the best simultaneous agreement with observations with this forcing set. It is found that observations of sea ice extent and velocity alone are not sufficient to unambiguously tune the model, and that sea ice thickness measurements are necessary to locate a unique subset of parameter space in which simultaneous agreement is achieved with all three observational datasets.
Resumo:
The spatial distribution of ice thickness/draft in the Arctic Ocean is examined using a sea ice model. A comparison of model predictions with submarine observations of sea ice draft made during cruises between 1987 and 1997 reveals that the model has the same deficiencies found in previous studies, namely ice that is too thick in the Beaufort Sea and too thin near the North Pole. We find that increasing the large scale shear strength of the sea ice leads to substantial improvements in the model's spatial distribution of sea ice thickness, and simultaneously improves the agreement between modeled and ERS-derived 1993–2001 mean winter ice thickness.
Resumo:
In this note, the authors discuss the contribution that frictional sliding of ice floes (or floe aggregates) past each other and pressure ridging make to the plastic yield curve of sea ice. Using results from a previous study that explicitly modeled the amount of sliding and ridging that occurs for a given global strain rate, it is noted that the relative contribution of sliding and ridging to ice stress depends upon ice thickness. The implication is that the shape and size of the plastic yield curve is dependent upon ice thickness. The yield-curve shape dependence is in addition to plastic hardening/weakening that relates the size of the yield curve to ice thickness. In most sea ice dynamics models the yield-curve shape is taken to be independent of ice thickness. The authors show that the change of the yield curve due to a change in the ice thickness can be taken into account by a weighted sum of two thickness-independent rheologies describing ridging and sliding effects separately. It would be straightforward to implement the thickness-dependent yield-curve shape described here into sea ice models used for global or regional ice prediction.
Resumo:
Arctic sea ice thickness is thought to be an important predictor of Arctic sea ice extent. However, coupled seasonal forecast systems do not generally use sea ice thickness observations in their initialization and are therefore missing a potentially important source of additional skill. To investigate how large this source is, a set of ensemble potential predictability experiments with a global climate model, initialized with and without knowledge of the sea ice thickness initial state, have been run. These experiments show that accurate knowledge of the sea ice thickness field is crucially important for sea ice concentration and extent forecasts up to 8 months ahead, especially in summer. Perturbing sea ice thickness also has a significant impact on the forecast error in Arctic 2 m temperature a few months ahead. These results suggest that advancing capabilities to observe and assimilate sea ice thickness into coupled forecast systems could significantly increase skill.
Resumo:
We employ data from two spacecraft, at the dawn flank of the magnetopause, to investigate fluctuations in the thickness of the low-latitude boundary layer (LLBL). We show the LLBL is considerably thinner shortly after the detection of a flux transfer event than it was during the event. These data are shown to be consistent with the theory of transient increases in the open LLBL thickness caused by a pulse of enhanced reconnection at the magnetopause.
Resumo:
Projections of Arctic sea ice thickness (SIT) have the potential to inform stakeholders about accessibility to the region, but are currently rather uncertain. The latest suite of CMIP5 Global Climate Models (GCMs) produce a wide range of simulated SIT in the historical period (1979–2014) and exhibit various biases when compared with the Pan-Arctic Ice Ocean Modelling and Assimilation System (PIOMAS) sea ice reanalysis. We present a new method to constrain such GCM simulations of SIT via a statistical bias correction technique. The bias correction successfully constrains the spatial SIT distribution and temporal variability in the CMIP5 projections whilst retaining the climatic fluctuations from individual ensemble members. The bias correction acts to reduce the spread in projections of SIT and reveals the significant contributions of climate internal variability in the first half of the century and of scenario uncertainty from mid-century onwards. The projected date of ice-free conditions in the Arctic under the RCP8.5 high emission scenario occurs in the 2050s, which is a decade earlier than without the bias correction, with potentially significant implications for stakeholders in the Arctic such as the shipping industry. The bias correction methodology developed could be similarly applied to other variables to reduce spread in climate projections more generally.
Resumo:
Accurate knowledge of ice-production rates within the marginal ice zones of the Arctic Ocean requires monitoring of the thin-ice distribution within polynyas. The thickness of the ice layer controls the heat loss and hence the new-ice formation. An established thinice algorithm using high-resolution MODIS data allows deriving the ice-thickness distribution within polynyas. The average uncertainty is ±4.7 cm for ice thicknesses below 0.2 m. In this study, the ice-thickness distributions within the Laptev Sea polynya for the two winter seasons 2007/08 and 2008/09 are calculated. Then, a new method is applied to determine a daily MODIS thin-ice product.