34 resultados para carbon source


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A study was carried out to determine the influence of fibrolytic enzymes derived from mesophilic or thermophilic fungal sources, added at ensiling, on time-course fermentation characteristics and in vitro rumen degradation of maize silage. The mesophilic enzyme was a commercial product derived from Trichodenna reesei (L), whereas the thermophilic enzyme was a crude extract produced from Thermoascus aurantiacus (Ta) in this laboratory. The fungus was cultured using maize cobs as a carbon source. The resulting fermentation extract was deionised to remove sugars and characterised for its protein concentration, main and side enzymic activities, optimal pH, protein molecular mass and isoelectric point. In an additional study, both enzymes were added to maize forage (333.5 g DM/kg, 70.0, 469.8, 227.1 and 307.5 g/kg DM of CP, NDF, ADF and starch, respectively) at two levels each, normalized according to xylanase activity, and ensiled in 0.5 kg capacity laboratory minisilos. Duplicate silos were opened at 2, 4, 8, 15, and 60 days after ensiling, and analysed for chemical characteristics. Silages from 60 days were bulked and in vitro gas production (GP) and organic matter degradability (OMD) profiles evaluated using the Reading Pressure Technique (RPT), in a completely randomised design. The crude enzyme extract contained mainly xylanase and endoglucanase activities, with very low levels of exoglucanase, which probably limited hydrolysis of filter paper. The extract contained three major protein bands of between 29 and 55 kDa, with mainly acidic isoelectric points. Ensiling maize with enzymes lowered (P < 0.05) the final silage pH, with this effect being observed throughout the ensiling process. All enzyme treatments reduced (P < 0.05) ADF contents. Treatments including Ta produced more gas (P < 0.05) than the controls after 24 h incubation in vitro, whereas end point gas production at 96 h was not affected. Addition of Ta increased (P < 0.01) OMD after 12 h (410 and 416 g/kg versus 373 g/kg), whereas both L and Ta increased (P < 0.05) OMD after 24 h. Addition of enzymes from mesophilic or thermophilic sources to maize forage at ensiling increased the rate of acidification of the silages and improved in vitro degradation kinetics, suggesting an improvement in the nutritive quality. (C) 2003 Elsevier B.V All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the largest contributions to biologically available nitrogen comes from the reduction of N-2 to ammonia by rhizobia in symbiosis with legumes. Plants supply dicarboxylic acids as a carbon source to bacteroids, and in return they receive ammonia. However, metabolic exchange must be more complex, because effective N-2 fixation by Rhizobium leguminosarum bv viciae bacteroids requires either one of two broad-specificity amino acid ABC transporters (Aap and Bra). It was proposed that amino acids cycle between plant and bacteroids, but the model was unconstrained because of the broad solute specificity of Aap and Bra. Here, we constrain the specificity of Bra and ectopically express heterologous transporters to demonstrate that branched-chain amino acid (LIV) transport is essential for effective N-2 fixation. This dependence of bacteroids on the plant for LIV is not due to their known down-regulation of glutamate synthesis, because ectopic expression of glutamate dehydrogenase did not rescue effective N-2 fixation. Instead, the effect is specific to LIV and is accompanied by a major reduction in transcription and activity of LIV biosynthetic enzymes. Bacteroids become symbiotic auxotrophs for LIV and depend on the plant for their supply. Bacteroids with aap bra null mutations are reduced in number, smaller, and have a lower DNA content than wild type. Plants control LIV supply to bacteroids, regulating their development and persistence. This makes it a critical control point for regulation of symbiosis. MICROBIOLOGY

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Crude cell-free extracts from Lactobacillus reuteri grown on cellobiose, maltose, lactose and raffinose were assayed for glycosidic activities. When raffinose was used as the carbon source, alpha-galactosidase was produced, showing the highest yield at the beginning of the stationary growth phase. A 64 kDa enzyme was purified by ultra- and gel filtration, and characterized for its hydrolytic and synthetic activity. Highest hydrolytic activity was found at pH 5.0 at 50 degreesC (K-M 0.55 mM, V-max 0.80 mumol min(-1) mg(-1) of protein). The crude cell-free extract was further used in glycosyl transfer reactions to synthesize oligosaccharides from melibiose and raffinose. At a substrate concentration of 23% (w/v) oligosaccharide mixtures were formed with main products being a trisaccharide at 26% (w/w) yield from melibiose after 8 h and a tetrasaccharide at 18% (w/w) yield from raffinose after 7 h. Methylation analysis revealed the trisaccharide to be 6' alpha-galactosyl melibiose and the tetrasaccharide to be stachyose. In both cases synthesis ceased when hydrolysis of the substrate reached 50%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aims: To investigate the effect of various carbon sources on the production of extracellular antagonistic compounds against two Escherichia coli strains and Salmonella enterica serotype Typhimurium by three canine-derived lactobacilli strains. Methods and Materials: Cell-free preparations, pH neutralized, were used in antibiotic disc experiments as an initial screening. The bacteria/carbohydrate combinations that showed inhibition of the growth of those pathogens, were further investigated in batch co-culture experiments. The cell-free supernatants of the cultures, that decreased the population number of the pathogens in the co-culture experiments to log CFU ml(-1) less than or equal to 4, were tested for inhibition of the pathogens in pure cultures at neutral and acidic pH. Conclusions: The results showed that the substrate seems to affect the production of antimicrobial compounds and this effect could not just be ascribed to the ability of the bacteria to grow in the various carbon sources. L. mucosae, L. acidophilus and L. reuteri, when grown in sugar mixtures consisting of alpha-glucosides (Degree of Polymerization (DP) 1-4) could produce antimicrobial compounds active against all three pathogens in vitro. This effect could not be attributed to a single ingredient of those sugar mixtures and was synergistic. This inhibition had a dose-response characteristic and was more active at acidic pH. Significance and Impact of the Study: Knowledge of the effect that the carbon source has on the production of antimicrobial compounds by gut-associated lactobacilli allows the rational design of prebiotic/probiotic combinations to combat gastrointestinal pathogens.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The growth of nine species of Bifidobacterium on media containing glucose, xylose, xylooligosaccharides (XOS), xylan or fructooligosaccharides (FOS) as the sole carbon source were compared in pure culture. The bifidobacteria differed in fermentation profiles when tested on different carbohydrates. All species grew to their highest final optical density (OD) on a glucose containing medium, with the exception of B. catenulatum which demonstrated a preference for xylose over glucose, and XOS over FOS. B. bifidum grew to the highest OD on XOS compared to xylose suggesting a specific transport system for the oligosaccharide over the monomer. This is consistent with a lack of β-xylosidase activity present in the culture medium. Lactate, formate and acetate levels were determined and the ratios of these metabolites altered between and within species growing on different carbohydrates. In general, high lactate production correlated with low formate production and low lactate concentrations were obtained at higher levels of formate. Bifidobacteria may alter their metabolic pathways based upon the carbohydrates that are available for their use.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A mathematical growth model for the batch solid-state fermentation process for fungal tannase production was developed and tested experimentally. The unstructured model describes the uptake and growth kinetics of Penicillium glabrum in an impregnated polyurethane foam substrate system. In general, good agreement between the experimental data and model simulations was obtained. Biomass, tannase and spore production are described by logistic kinetics with a time delay between biomass production and tannase and spore formation. Possible induction mechanisms for the latter are proposed. Hydrolysis of tannic acid, the main carbon source in the substrate system, is reasonably well described with Michaelis-Menten kinetics with time-varying enzyme concentration but a more complex reaction mechanism is suspected. The metabolism of gallic acid, a tannase-hydrolysis product of tannic acid, was shown to be growth limiting during the main growth phase. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We quantify the risks of climate-induced changes in key ecosystem processes during the 21st century by forcing a dynamic global vegetation model with multiple scenarios from 16 climate models and mapping the proportions of model runs showing forest/nonforest shifts or exceedance of natural variability in wildfire frequency and freshwater supply. Our analysis does not assign probabilities to scenarios or weights to models. Instead, we consider distribution of outcomes within three sets of model runs grouped by the amount of global warming they simulate: <2°C (including simulations in which atmospheric composition is held constant, i.e., in which the only climate change is due to greenhouse gases already emitted), 2–3°C, and >3°C. High risk of forest loss is shown for Eurasia, eastern China, Canada, Central America, and Amazonia, with forest extensions into the Arctic and semiarid savannas; more frequent wildfire in Amazonia, the far north, and many semiarid regions; more runoff north of 50°N and in tropical Africa and northwestern South America; and less runoff in West Africa, Central America, southern Europe, and the eastern U.S. Substantially larger areas are affected for global warming >3°C than for <2°C; some features appear only at higher warming levels. A land carbon sink of ≈1 Pg of C per yr is simulated for the late 20th century, but for >3°C this sink converts to a carbon source during the 21st century (implying a positive climate feedback) in 44% of cases. The risks continue increasing over the following 200 years, even with atmospheric composition held constant.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Extracellular polysaccharide (EPS) is produced by diverse bacterial pathogens and fulfills assorted roles, including providing a structural matrix for biofilm formation and more specific functions in virulence, such as protection against immune defenses. We report here the first investigation of some of the genes important for biofilm formation in Photorhabdus luminescens and demonstrate the key role of the phosphomannose isomerase gene, manA, in the structure of functional EPS. Phenotypic analyses of a manA-deficient mutant showed the importance of EPS in motility, insect virulence, and biofilm formation on abiotic surfaces as well as the requirement of this gene for the use of mannose as the sole carbon source. Conversely, this defect had no apparent impact on symbiosis with the heterorhabditid nematode vector. A more detailed analysis of biofilm formation revealed that the manA mutant was able to attach to surfaces with the same efficiency as that of the wild-type strain but could not develop the more extended biofilm matrix structures. A compositional analysis of P. luminescens EPS reveals how the manA mutation has a major effect on the formation of a complete, branched EPS.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fermentation properties of oligosaccharides derived from lactulose (OsLu) and lactose (GOS) have been assessed in pH-controlled anaerobic batch cultures using lactulose and Vivinal-GOS as reference carbohydrates. Changes in gut bacterial populations and their metabolic activities were monitored over 24 h by fluorescent in situ hybridization (FISH) and by measurement of short-chain fatty acid (SCFA) production. Lactulose-derived oligosaccharides were selectively fermented by Bifidobacterium and lactic acid bacterial populations producing higher SCFA concentrations compared to GOS. The highest total SCFA production was from Vivinal-GOS > lactulose > OsLu > GOS. Longer incubation periods produced a selective fermentation of OsLu when they were used as a carbon source reaching the highest selective index scores. The new oligosaccharides may constitute a good alternative to lactulose, and they could belong to a new generation of prebiotics to be used as a functional ingredient for improving the composition of gut microflora.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Phenotype MicroArray (TM) (PM) technology was used to study the metabolic characteristics of 29 Salmonella strains belonging to seven serotypes of S. enterica spp. enterica. Strains of serotypes Typhimurium (six strains among definite phage types DTs 1, 40 and 104) and Agona (two strains) were tested for 949 substrates, Enteritidis (six strains of phage type PT1), Give, Hvittingfoss, Infantis and Newport strains (two of each) were tested for 190 substrates and seven other Agona strains for 95 substrates. The strains represented 18 genotypes in pulsed-field gel electrophoresis (PFGE). Among 949 substrates, 18 were identified that could be used to differentiate between the strains of those seven serotypes or within a single serotype. Unique metabolic differences between the Finnish endemic Typhimurium DT1 and Agona strains were detected, for example, in the metabolism of d-tagatose, d-galactonic acid gamma-lactone and l-proline as a carbon source. Thus, the PM technique is a useful tool for identifying potential differential markers on a metabolic basis that could be used for epidemiological surveillance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sigma B (σB) is an alternative sigma factor that controls the transcriptional response to stress in Listeria monocytogenes and is also known to play a role in the virulence of this human pathogen. In the present study we investigated the impact of a sigB deletion on the proteome of L. monocytogenes grown in a chemically defined medium both in the presence and in the absence of osmotic stress (0.5 M NaCl). Two new phenotypes associated with the sigB deletion were identified using this medium. (i) Unexpectedly, the strain with the ΔsigB deletion was found to grow faster than the parent strain in the growth medium, but only when 0.5 M NaCl was present. This phenomenon was independent of the carbon source provided in the medium. (ii) The ΔsigB mutant was found to have unusual Gram staining properties compared to the parent, suggesting that σB contributes to the maintenance of an intact cell wall. A proteomic analysis was performed by two-dimensional gel electrophoresis, using cells growing in the exponential and stationary phases. Overall, 11 proteins were found to be differentially expressed in the wild type and the ΔsigB mutant; 10 of these proteins were expressed at lower levels in the mutant, and 1 was overexpressed in the mutant. All 11 proteins were identified by tandem mass spectrometry, and putative functions were assigned based on homology to proteins from other bacteria. Five proteins had putative functions related to carbon utilization (Lmo0539, Lmo0783, Lmo0913, Lmo1830, and Lmo2696), while three proteins were similar to proteins whose functions are unknown but that are known to be stress inducible (Lmo0796, Lmo2391, and Lmo2748). To gain further insight into the role of σB in L. monocytogenes, we deleted the genes encoding four of the proteins, lmo0796, lmo0913, lmo2391, and lmo2748. Phenotypic characterization of the mutants revealed that Lmo2748 plays a role in osmotolerance, while Lmo0796, Lmo0913, and Lmo2391 were all implicated in acid stress tolerance to various degrees. Invasion assays performed with Caco-2 cells indicated that none of the four genes was required for mammalian cell invasion. Microscopic analysis suggested that loss of Lmo2748 might contribute to the cell wall defect observed in the ΔsigB mutant. Overall, this study highlighted two new phenotypes associated with the loss of σB. It also demonstrated clear roles for σB in both osmotic and low-pH stress tolerance and identified specific components of the σB regulon that contribute to the responses observed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Experimental results from the open literature have been employed for the design and techno-economic evaluation of four process flowsheets for the production of microbial oil or biodiesel. The fermentation of glucose-based media using the yeast strain Rhodosporidium toruloides has been considered. Biodiesel production was based on the exploitation of either direct transesterification (without extraction of lipids from microbial biomass) or indirect transesterifaction of extracted microbial oil. When glucose-based renewable resources are used as carbon source for an annual production capacity of 10,000 t microbial oil and zero cost of glucose (assuming development of integrated biorefineries in existing industries utilising waste or by-product streams) the estimated unitary cost of purified microbial oil is $3.4/kg. Biodiesel production via indirect transesterification of extracted microbial oil proved more cost-competitive process compared to the direct conversion of dried yeast cells. For a price of glucose of $400/t oil production cost and biodiesel production cost are estimated to be $5.5/kg oil and $5.9/kg biodiesel, correspondingly. Industrial implementation of microbial oil production from oleaginous yeast is strongly dependent on the feedstock used and on the fermentation stage where significantly higher productivities and final microbial oil concentrations should be achieved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aims: To study the biotechnological production of lipids containing rich amounts of the medically and nutritionally important c-linolenic acid (GLA), during cultivation of the Zygomycetes Thamnidium elegans, on mixtures of glucose and xylose, abundant sugars of lignocellulosic biomass. Methods and Results: Glucose and xylose were utilized as carbon sources, solely or in mixtures, under nitrogen-limited conditions, in batch-flask or bioreactor cultures. On glucose, T. elegans produced 31.9 g/L of biomass containing 15.0 g/L lipid with significantly high GLA content (1014 mg/L). Xylose was proved to be an adequate substrate for growth and lipid production. Additionally, xylitol secretion occurred when xylose was utilized as carbon source, solely or in mixtures with glucose. Batch-bioreactor trials on glucose yielded satisfactory lipid production, with rapid substrate consumption rates. Analysis of intracellular lipids showed that the highest GLA content was observed in early stationary growth phase, while the phospholipid fraction was the most unsaturated fraction of T. elegans. Conclusions: Thamnidium elegans represents a promising fungus for the successful valorization of sugar-based lignocellulosic residues into microbial lipids of high nutritional and pharmaceutical interest.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present report and for the first time in the international literature, the impact of the addition of NaCl upon growth and lipid production on the oleaginous yeast Rhodosporidium toruloides was studied. Moreover, equally for first time, lipid production by R. toruloides was performed under non-aseptic conditions. Therefore, the potentiality of R. toruloides DSM 4444 to produce lipid in media containing several initial concentrations of NaCl with glucose employed as carbon source was studied. Preliminary batch-flask trials with increasing amounts of NaCl revealed the tolerance of the strain against NaCl content up to 6.0% (w/v). However, 4.0% (w/v) of NaCl stimulated lipid accumulation for this strain, by enhancing lipid production up to 71.3% (w/w) per dry cell weight. The same amount of NaCl was employed in pasteurized batch-flask cultures in order to investigate the role of the salt as bacterial inhibiting agent. The combination of NaCl and high glucose concentrations was found to satisfactorily suppress bacterial contamination of R. toruloides cultures under these conditions. Batch-bioreactor trials of the yeast in the same media with high glucose content (up to 150 g/L) resulted in satisfactory substrate assimilation, with almost linear kinetic profile for lipid production, regardless of the initial glucose concentration imposed. Finally, fed-batch bioreactor cultures led to the production of 37.2 g/L of biomass, accompanied by 64.5% (w/w) of lipid yield. Lipid yield per unit of glucose consumed received the very satisfactory value of 0.21 g/g, a value amongst the highest ones in the literature. The yeast lipid produced contained mainly oleic acid and to lesser extent palmitic and stearic acids, thus constituting a perfect starting material for “second generation” biodiesel