49 resultados para adp glucose pyrophosphorylase


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poor glucose tolerance may be an under-researched contributory factor in the high (10% to 20%) pre-weaning mortality rate observed in pigs. Insulin resistance commences at around week 12 of gestation in the sow, although there are conflicting reports in the literature about the extent to which insulin resistance is modulated by maternal diet. The aim of the study was to determine the effects of supplementing the maternal diet with different dietary oils during either the first half or the second half of gestation on the glucose tolerance of the sow. Sows were offered the control (C: n = 5) diet as pellets or the C diet plus 10% extra energy (h = 16 per group) derived from either. (i) extra pellets; (ii) palm oil; (iii) olive oil; (iv) sunflower oil; or (v) fish oil. Experimental diets were fed during either the first (G1) or second (G2) half of gestation. A glucose tolerance test (GTT) was conducted on day 108 of gestation by administering 0.5g/kg glucose i.v. Blood samples were taken every 5 to 10 min for 90 min post administration. The change in body weight and backfat thickness during gestation was similar but both type and timing of dietary supplementation influenced litter size and weight. With the exception of the sunflower oil group, supplementing the maternal diet in G1 resulted in larger and heavier litters, particularly in mothers offered palm oil. Basal blood glucose concentrations tended to be more elevated in G1 than G2 groups, whilst plasma insulin concentrations were similar Following a GTT, the adjusted area under the curve was greater in G1 compared to G2 sows, despite no differences in glucose clearance. Maternal diet appeared to influence the relationship between glucose curve characteristics following a GTT and litter outcome. In conclusion, the degree of insulin sensitivity can be altered by both the period during which maternal nutritional supplementation is offered and the fatty acid profile of the diet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Women who were themselves small-for-gestational age (SGA) are at a greater risk of adulthood diseases such as non-insulin-dependent diabetes mellitus (NIDDM), and twice at risk of having an SGA baby themselves. The aim of this study was to examine the intergenerational pig. Low (L) and normal (N) birth weight female piglets were followed throughout their first pregnancy (generation 1 (0)). After they had given birth, the growth and development of the lightest (I) and heaviest (n) female piglet from each litter were monitored until approximately 5 months of age (generation 2 (G2)). A glucose tolerance test (GTT) was conducted on G1 pig at similar to 6 months of age and again during late pregnancy; a GTT was also conducted on G2 pigs at similar to 4 months of age. G1 L offspring exhibited impaired glucose metabolism in later life compared to their G1 N sibling but in the next generation a similar scenario was only observed between I and n offspring born to G1 L mothers. Despite G1 L mothers showing greater glucose intolerance in late pregnancy and a decreased litter size, average piglet birth weight was reduced and there was also a large variation in litter weight; this suggests that they were, to some extent, prioritising their nutrient intake towards themselves rather than promoting their reproductive performance. There were numerous relationships between body shape at birth and glucose curve characteristics in later life, which can, to some extent, be used to predict neonatal outcome. In conclusion, intergenerational effects are partly seen in the pig. It is likely that some of the intergenerational influences may be masked due to the pig being a litter-bearing species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oxidation of glucose is a complex process usually requiring catalytically active electrode surfaces or enzyme modified electrodes. In this study the effect of high intensity microwave radiation on the oxidation of glucose in alkaline solution at Au, Cu, and Ni electrodes is reported. Calibration experiments with the Fe(CN)(6)(3-/4-) redox system in aqueous 0.1 M NaOH indicate that strong thermal effects occur at both 50 and 500 mu m diameter electrodes with temperatures reaching 380 K. Extreme mass transport effects with mass transport coefficients of k(mt) > 0.01 m s(-1) (or k(mt) > 1.0 cm s(-1)) are observed at 50 mu m diameter electrodes in the presence of microwaves. The electrocatalytic oxidation of glucose at 500 mu m diameter Au, Cu, or Ni electrodes immersed in 0.1 M NaOH and in the presence of microwave radiation is shown to be dominated by kinetic control. The magnitude of glucose oxidation currents at Cu electrodes is shown to depend on the thickness of a pre-formed oxide layer. At 50 mu m diameter Au, Cu, or Ni electrodes microwave enhanced current densities are generally higher, but only at Au electrodes is a significantly increased rate for the electrocatalytic oxidation of glucose to gluconolactone observed. This rate enhancement appears to be independent of temperature but microwave intensity dependent, and therefore non-thermal in nature. Voltammetric currents observed at Ni electrodes in the presence of microwaves show the best correlation with glucose concentration and are therefore analytically most useful.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Intravenous infusions of glucose and amino acids increase both nitrogen balance and muscle accretion. We hypothesised that co-infusion of glucose ( to stimulate insulin) and essential amino acids (EAA) would act additively to improve nitrogen balance by decreasing muscle protein degradation in association with alterations in muscle expression of components of the ubiquitin-proteasome proteolytic pathway. Methods: We examined the effect of a 5 day intravenous infusions of saline, glucose, EAA and glucose + EAA, on urinary nitrogen excretion and muscle protein degradation. We carried out the study in 6 restrained calves since ruminants offer the advantage that muscle protein degradation can be assessed by excretion of 3 methyl-histidine and multiple muscle biopsies can be taken from the same animal. On the final day of infusion blood samples were taken for hormone and metabolite measurement and muscle biopsies for expression of ubiquitin, the 14-kDa E2 ubiquitin conjugating enzyme, and proteasome sub-units C2 and C8. Results: On day 5 of glucose infusion, plasma glucose, insulin and IGF-1 concentrations were increased while urea nitrogen excretion and myofibrillar protein degradation was decreased. Co-infusion of glucose + EAA prevented the loss of urinary nitrogen observed with EAA infusions alone and enhanced the increase in plasma IGF-1 concentration but there was no synergistic effect of glucose + EAA on the decrease in myofibrillar protein degradation. Muscle mRNA expression of the ubiquitin conjugating enzyme, 14-kDa E2 and proteasome sub-unit C2 were significantly decreased, after glucose but not amino acid infusions, and there was no further response to the combined infusions of glucose + EAA. Conclusion: Prolonged glucose infusion decreases myofibrillar protein degradation, prevents the excretion of infused EAA, and acts additively with EAA to increase plasma IGF-1 and improve net nitrogen balance. There was no evidence of synergistic effects between glucose + EAA infusion on muscle protein degradation or expression of components of the ubiquitin-proteasome proteolytic pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anthraquinone immobilised onto the surface of indigo microcrystals enhances the reductive dissolution of indigo to leuco-indigo. Indigo reduction is driven by glucose in aqueous NaOH and a vibrating gold disc electrode is employed to monitor the increasing leuco-indigo concentration with time. Anthraquinone introduces a strong catalytic effect which is explained by invoking a molecular "wedge effect'' during co-intercalation of Na+ and anthraquinone into the layered indigo crystal structure. The glucose-driven indigo reduction, which is in effective in 0.1 M NaOH at 65 degrees C, becomes facile and goes to completion in the presence of anthraquinone catalyst. Electron microscopy of indigo crystals before and after reductive dissolution confirms a delamination mechanism initiated at the edges of the plate-like indigo crystals. Catalysis occurs when the anthraquinone-indigo mixture reaches a molar ratio of 1:400 (at 65 degrees C; corresponding to 3 mu M anthraquinone) with excess of anthraquinone having virtually no effect. A strong temperature effect ( with a composite E-A approximate to 120 kJ mol(-1)) is observed for the reductive dissolution in the presence of anthraquinone. The molar ratio and temperature effects are both consistent with the heterogeneous nature of the anthraquinone catalysis in the aqueous reaction mixture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrochemical determination of redox active dye species is demonstrated in indigo samples contaminated with high levels of organic and inorganic impurities. The use of a hydrodynamic electrode system based on a vibrating probe (250 Hz, 200 mu m lateral amplitude) allows time-independent diffusion controlled signals to be enhanced and reliable concentration data to be obtained under steady state conditions at relatively fast scan rates up to 4 V s-1In this work the indigo content of a complex plant-derived indigo sample (dye content typically 30%) is determined after indigo is reduced by addition of glucose in aqueous 0.2 M NaOH. The soluble leuco-indigo is measured by its oxidation response at a vibrating electrode. The vibrating electrode, which consisted of a laterally vibrating 500 mu m diameter gold disc, is calibrated with Fe(CN)(6) 3-/4- in 0.1 M KCl and employed for indigo determination at 55, 65, and 75 C in 0.2 M NaOH. Determinations of the indigo content of 25 different samples of plant-derived indigo are compared with those obtained by conventional spectrophotometry. This comparison suggests a significant improvement by the electrochemical method, which appears to be less sensitive to impurities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reduction of indigo (dispersed in water) to leuco-indigo (dissolved in water) is an important industrial process and investigated here for the case of glucose as an environmentally benign reducing agent. In order to quantitatively follow the formation of leuco-indigo two approaches based on (i) rotating disk voltammetry and (ii) sonovoltammetry are developed. Leuco-indigo, once formed in alkaline solution, is readily monitored at a glassy carbon electrode in the mass transport limit employing hydrodynamic voltammetry. The presence of power ultrasound further improves the leuco-indigo determination due to additional agitation and homogenization effects. While inactive at room temperature, glucose readily reduces indigo in alkaline media at 65 degrees C. In the presence of excess glucose, a surface dissolution kinetics limited process is proposed following the rate law d eta(leuco-indigo)/dt = k x c(OH-) x S-indigo where eta(leuco-indigo) is the amount of leuco-indigo formed, k = 4.1 x 10(-9) m s(-1) (at 65 degrees C, assuming spherical particles of I gm diameter) is the heterogeneous dissolution rate constant,c(OH-) is the concentration of hydroxide, and Sindigo is the reactive surface area. The activation energy for this process in aqueous 0.2 M NaOH is E-A = 64 U mol(-1) consistent with a considerable temperature effects. The redox mediator 1,8-dihydroxyanthraquinone is shown to significantly enhance the reaction rate by catalysing the electron transfer between glucose and solid indigo particles. (c) 2006 Elsevier Ltd. All fights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Apolipoprotein L1 in plasma is associated with high- density lipoprotein. Novel APOL1 polymorphisms are investigated along with the association of two common haplotypes (Lys166Glu, Ile244Met, Lys271Arg) with circulating lipid and glucose levels. Although the amino acid substitutions occur in the amphipathic alpha helices region involved in lipid binding, these substitutions were found not to independently account for variability in circulating lipid and glucose levels in 149 middle age males.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oxidation of glucose is a complex process usually requiring catalytically active electrode surfaces or enzyme-modified electrodes. In this study the effect of high intensity microwave radiation on the oxidation of glucose in alkaline solution at Au, Cu, and Ni electrodes is reported. Calibration experiments with the Fe(CN)63–/4– redox system in aqueous 0.1 M NaOH indicate that strong thermal effects occur at both 50 and 500 µm diameter electrodes with temperatures reaching 380 K. Extreme mass transport effects with mass transport coefficients of kmt > 0.01 m s–1(or kmt > 1.0 cm s–1) are observed at 50 µm diameter electrodes in the presence of microwaves. The electrocatalytic oxidation of glucose at 500 µm diameter Au, Cu, or Ni electrodes immersed in 0.1 M NaOH and in the presence of microwave radiation is shown to be dominated by kinetic control. The magnitude of glucose oxidation currents at Cu electrodes is shown to depend on the thickness of a pre-formed oxide layer. At 50 µm diameter Au, Cu, or Ni electrodes microwave enhanced current densities are generally higher, but only at Au electrodes is a significantly increased rate for the electrocatalytic oxidation of glucose to gluconolactone observed. This rate enhancement appears to be independent of temperature but microwave intensity dependent, and therefore non-thermal in nature. Voltammetric currents observed at Ni electrodes in the presence of microwaves show the best correlation with glucose concentration and are therefore analytically most useful.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Installing hydroxymethyl and hydroxyethyl substitutions at C-4 through vinylation and hydroboration-oxidation reactions of the C-4 bis-hydroxymethyl derivative of D-glucose based substrate, and inserting heteroatoms thereafter permitted formation of N-, O-, or S-heterocycles leading to [4,5]or [5,5]-spirocycles and a bicyclo[3.3.0]octane product. Some of the spirocycles were converted to spironucleosides under Vorbruggen glycosidation reaction conditions. Similarly, the bicyclic product was elaborated to the corresponding bicyclic nucleoside as well as an unexpected tricyclic nucleoside.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The key intermediate 1,2:5,6-di-O-isopropylidene-3-deoxy-3 beta-allyl-alpha-D-glucofuranose (8) could be conveniently prepared through radical induced allyl substitution at C-3 of appropriate 1,2:5,6-di-O-isopropylidene-alpha-D-glucofuranose derivatives (7a,b) and used to synthesize enantiomeric bishydroxymethyl aminocyclopentanols 13 and 19 by the application of a 1,3-dipolar nitrone cycloaddition reaction involving the C-5 or C-1 aldehyde functionality. The products were subsequently transformed into carbanucleoside enantiomers 15 and 21. The diastercomeric isoxazolidinocyclopentane derivative 20 was similarly converted to carbanucleoside 22. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The carbohydrate-derived substrate 3-C-allyl-1,2: 5,6-di-O-isopropylidene-alpha-D-allofuranose was judiciously manipulated for preparing suitable synthons, which could be converted to a variety of isoxazolidino-spirocycles and -tricycles through the application of ring-closing metathesis (RCM) and intramolecular nitrone cycloaddition (INC) reactions. Cleavage of the isoxazolidine rings of some of these derivatives by tranfer hydrogenolysis followed by coupling of the generated amino functionalities with 5-amino-4,6-dichloropyrimidine furnished the corresponding chloropyrimidine nucleosides, which were elaborated to spiroannulated carbanucleosides and conformationally locked bicyclo[2.2.1] heptane/ oxa-bicyclo[3.2.1]octane nucleosides. However, use of higher temperature for the cyclization of one of the chloropyrimidines led to the dimethylaminopurine analogue as a sole product, formed via nucleophilic displacement of the chloro group by dimethylamine generated from DMF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbohydrate-derived substrates having (i) C-5 nitrone and C-3-O-allyl, (ii) C-4 vinyl and a C-3-O-tethered nitrone, and (iii) C-5 nitrone and C-4-allyloxymethyl generated tetracyclic isoxazolidinooxepane/-pyrart ring systems upon intramolecular nitrone cycloaddition reactions. Deprotection of the 1,2acetonides of these derivatives followed by introduction of uracil base via Vorbruggen reaction condition and cleavage of the isooxazolidine rings as well as of benzyl groups by transfer hydrogenolysis yielded an oxepane ring containing blicyclic and spirocyclic nucleosides. The corresponding oxepane based nucleoside analogues were prepared by cleavage of isoxazolidine and furanose rings, coupling of the generated amino functiontalities with 5-amino-4,6-dichloropyrimidine, cyclization to purine rings, and finally aminolysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and aims: When a high fat oral load is followed several hours later by further ingestion of nutrients, there is an early postprandial peak in plasma triacylglycerol (TG). The aim of this study was to investigate the location and release of lipid from within the gastrointestinal tract. Methods: Ten healthy patients undergoing oesopho-gastro-duodenoscopy (OGD) were recruited. At t=0, all patients consumed a 50 g fat emulsion and at t=5 hours they consumed either water or a 38 g glucose solution. OGD was performed at t=6 hours and jejunal biopsy samples were evaluated for fat storage. A subgroup of five subjects then underwent a parallel metabolic study in which postprandial lipid and hormone measurements were taken during an identical two meal protocol. Results: Following oral fat at t=0, samples from patients that had subsequently ingested glucose exhibited significantly less staining for lipid within the mucosa and submucosa of the jejunum than was evident in patients that had consumed only water (p=0.028). There was also less lipid storage within the cytoplasm of enterocytes (p=0.005) following oral glucose. During the metabolic study, oral glucose consumed five hours after oral fat resulted in a postprandial peak in plasma TG, chylomicron-TG, and apolipoprotein B48 concentration compared with oral water. Conclusion: After a fat load, fat is retained within the jejunal tissue and released into plasma following glucose ingestion, resulting in a peak in chylomicron-TG which has been implicated in the pathogenesis of atherosclerosis.