37 resultados para ZAP-70 Protein-Tyrosine Kinase


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The hepatitis C virus (HCV) non-structural 5A protein (NS5A) contains a highly conserved C-terminal polyproline motif with the consensus sequence Pro-X-X- Pro-X-Arg that is able to interact with the Src-homology 3 (SH3) domains of a variety of cellular proteins. Results: To understand this interaction in more detail we have expressed two N-terminally truncated forms of NS5A in E. coli and examined their interactions with the SH3 domain of the Src-family tyrosine kinase, Fyn. Surface plasmon resonance analysis revealed that NS5A binds to the Fyn SH3 domain with what can be considered a high affinity SH3 domain-ligand interaction (629 nM), and this binding did not require the presence of domain I of NS5A (amino acid residues 32-250). Mutagenic analysis of the Fyn SH3 domain demonstrated the requirement for an acidic cluster at the C-terminus of the RT-Src loop of the SH3 domain, as well as several highly conserved residues previously shown to participate in SH3 domain peptide binding. Conclusion: We conclude that the NS5A: Fyn SH3 domain interaction occurs via a canonical SH3 domain binding site and the high affinity of the interaction suggests that NS5A would be able to compete with cognate Fyn ligands within the infected cell.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activation of mouse platelets by collagen is associated with tyrosine phosphorylation of multiple proteins including the Fc receptor gamma-chain, the tyrosine kinase Syk and phospholipase Cgamma2, suggesting that collagen signals in a manner similar to that of immune receptors. This hypothesis has been tested using platelets from mice lacking the Fc receptor gamma-chain or Syk. Tyrosine phosphorylation of Syk and phospholipase Cgamma2 by collagen stimulation is absent in mice lacking the Fc receptor gamma-chain. Tyrosine phosphorylation of phospholipase Cgamma2 by collagen stimulation is also absent in mice platelets which lack Syk, although phosphorylation of the Fc receptor gamma-chain is maintained. In contrast, tyrosine phosphorylation of platelet proteins by the G protein-coupled receptor agonist thrombin is maintained in mouse platelets deficient in Fc receptor gamma-chain or Syk. The absence of Fc receptor gamma-chain or Syk is accompanied by a loss of secretion and aggregation responses in collagen- but not thrombin-stimulated platelets. These observations provide the first direct evidence of an essential role for the immunoreceptor tyrosine-based activation motif (ITAM) in signalling by a non-immune receptor stimulus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxidized low-density lipoproteins (oxLDL) generated in the hyperlipidemic state may contribute to unregulated platelet activation during thrombosis. Although the ability of oxLDL to activate platelets is established, the underlying signaling mechanisms remain obscure. Weshow that oxLDL stimulate platelet activation through phosphorylation of the regulatory light chains of the contractile protein myosin IIa (MLC). oxLDL, but not native LDL, induced shape change, spreading, and phosphorylation of MLC (serine 19) through a pathway that was ablated under conditions that blocked CD36 ligation or inhibited Src kinases, suggesting a tyrosine kinase–dependent mechanism. Consistent with this, oxLDL induced tyrosine phosphorylation of a number of proteins including Syk and phospholipase C g2. Inhibition of Syk, Ca21 mobilization, and MLC kinase (MLCK) only partially inhibited MLC phosphorylation, suggesting the presence of a second pathway. oxLDL activated RhoA and RhoA kinase (ROCK) to induce inhibitory phosphorylation of MLC phosphatase (MLCP). Moreover, inhibition of Src kinases prevented the activation of RhoA and ROCK, indicating that oxLDL regulates contractile signaling through a tyrosine kinase–dependent pathway that induces MLC phosphorylation through the dual activation of MLCK and inhibition of MLCP. These data reveal new signaling events downstream of CD36 that are critical in promoting platelet aggregation by oxLDL.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, our increased understanding of the complex signal transduction mechanisms that regulate cellular function has fueled huge advances in all aspects of biomedical science and cell biology. Platelet and megakaryocyte function is no exception to this. In the last 10 yr our understanding of the receptor biochemistry and the systems that they control has been pivotal in the development of new strategies to inhibit platelet function and thereby prevent thrombosis. Experimental techniques have become more and more elegant, however; the basic toolbox that a researcher requires to study signaling in platelets and megakaryoctes is described in this and several subsequent chapters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The E3 ligase c-Cbl ubiquitinates protease-activated receptor 2 (PAR(2)), which is required for post-endocytic sorting of PAR(2) to lysosomes, where degradation arrests signaling. The mechanisms of post-endocytic sorting of ubiquitinated receptors are incompletely understood. Here, we investigated the role of hepatocyte growth factor-regulated tyrosine kinase substrate (HRS), in post-endocytic sorting and signaling of PAR(2). In HEK-PAR(2) cells, PAR(2) activating peptide (PAR(2)-AP) induced PAR(2) trafficking from the cell surface to early endosomes containing endogenous HRS, and then to lysosomes. HRS overexpression or knockdown with small interfering RNA caused formation of enlarged HRS-positive endosomes, where activated PAR(2) and c-Cbl accumulated, and PAR(2) failed to traffic to lysosomes. Overexpression of HRS prevented PAR(2)-AP-induced degradation of PAR(2), as determined by Western blotting. Overexpression of HRS mutant lacking an ubiquitin-binding motif similarly caused retention of PAR(2) in enlarged endosomes. Moreover, HRS overexpression or knockdown caused retention of ubiquitin-resistant PAR(2)Delta14K/R in enlarged HRS-containing endosomes, preventing recycling and resensitization of PAR(2)Delta14K/R. HRS overexpression or knockdown similarly prevented lysosomal trafficking and recycling of calcitonin receptor-like receptor, a non-ubiquitinated receptor that traffics to lysosomes after sustained activation and recycles after transient activation. Thus, HRS plays a critically important role in the post-endocytic sorting of single receptors, PAR(2) and CLR, to both degradative and recycling pathways. This sorting role for HRS is independent of its ubiquitin-interacting motif, and it can regulate trafficking of both ubiquitinated and non-ubiquitinated PAR(2) and non-ubiquitinated CLR. The ultimate sorting decision to degradative or recycling pathways appears to occur downstream from HRS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Filamin A (FlnA) cross-links actin filaments and connects the Von Willebrand factor receptor GPIb-IX-V to the underlying cytoskeleton in platelets. Because FlnA deficiency is embryonic lethal, mice lacking FlnA in platelets were generated by breeding FlnA(loxP/loxP) females with GATA1-Cre males. FlnA(loxP/y) GATA1-Cre males have a macrothrombocytopenia and increased tail bleeding times. FlnA-null platelets have decreased expression and altered surface distribution of GPIbalpha because they lack the normal cytoskeletal linkage of GPIbalpha to underlying actin filaments. This results in approximately 70% less platelet coverage on collagen-coated surfaces at shear rates of 1,500/s, compared with wild-type platelets. Unexpectedly, however, immunoreceptor tyrosine-based activation motif (ITAM)- and ITAM-like-mediated signals are severely compromised in FlnA-null platelets. FlnA-null platelets fail to spread and have decreased alpha-granule secretion, integrin alphaIIbbeta3 activation, and protein tyrosine phosphorylation, particularly that of the protein tyrosine kinase Syk and phospholipase C-gamma2, in response to stimulation through the collagen receptor GPVI and the C-type lectin-like receptor 2. This signaling defect was traced to the loss of a novel FlnA-Syk interaction, as Syk binds to FlnA at immunoglobulin-like repeat 5. Our findings reveal that the interaction between FlnA and Syk regulates ITAM- and ITAM-like-containing receptor signaling and platelet function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Eph receptor tyrosine kinases interact with their ephrin ligands on adjacent cells to facilitate contact-dependent cell communication. Ephrin B ligands are expressed on T cells and have been suggested to act as co-stimulatory molecules during T cell activation. There are no detailed reports of the expression and modulation of EphB receptors on dendritic cells, the main antigen presenting cells that interact with T cells. Here we show that mouse splenic dendritic cells (DC) and bone-marrow derived DCs (BMDC) express EphB2, a member of the EphB family. EphB2 expression is modulated by ligation of TLR4 and TLR9 and also by interaction with ephrin B ligands. Co-localization of EphB2 with MHC-II is also consistent with a potential role in T cell activation. However, BMDCs derived from EphB2 deficient mice were able to present antigen in the context of MHC-II and produce T cell activating cytokines to the same extent as intact DCs. Collectively our data suggest that EphB2 may contribute to DC responses, but that EphB2 is not required for T cell activation. This result may have arisen because DCs express other members of the EphB receptor family, EphB3, EphB4 and EphB6, all of which can interact with ephrin B ligands, or because EphB2 may be playing a role in another aspect of DC biology such as migration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Platelet activation by collagen depends on signals transduced by the glycoprotein (GP)VI–Fc receptor (FcR)-chain collagen receptor complex, which involves recruitment of phosphatidylinositol 3-kinase (PI3K) to phosphorylated tyrosines in the linker for activation of T cells (LAT). An interaction between the p85 regulatory subunit of PI3K and the scaffolding molecule Grb-2-associated binding protein-1 (Gab1), which is regulated by binding of the Src homology 2 domain-containing protein tyrosine phosphatase-2 (SHP-2) to Gab1, has been shown in other cell types to sustain PI3K activity to elicit cellular responses. Platelet endothelial cell adhesion molecule-1 (PECAM-1) functions as a negative regulator of platelet reactivity and thrombosis, at least in part by inhibiting GPVI–FcR-chain signaling via recruitment of SHP-2 to phosphorylated immunoreceptor tyrosine-based inhibitory motifs in PECAM-1. Objective: To investigate the possibility that PECAM-1 regulates the formation of the Gab1–p85 signaling complexes, and the potential effect of such interactions on GPVI-mediated platelet activation in platelets. Methods: The ability of PECAM-1 signaling to modulate the LAT signalosome was investigated with immunoblotting assays on human platelets and knockout mouse platelets. Results: PECAM-1-associated SHP-2 in collagen-stimulated platelets binds to p85, which results in diminished levels of association with both Gab1 and LAT and reduced collagen-stimulated PI3K signaling. We therefore propose that PECAM-1-mediated inhibition of GPVI-dependent platelet responses result, at least in part, from recruitment of SHP-2–p85 complexes to tyrosine-phosphorylated PECAM-1, which diminishes the association of PI3K with activatory signaling molecules, such as Gab1 and LAT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CLEC-2 is a member of new family of C-type lectin receptors characterized by a cytosolic YXXL downstream of three acidic amino acids in a sequence known as a hemITAM (hemi-immunoreceptor tyrosine-based activation motif). Dimerization of two phosphorylated CLEC-2 molecules leads to recruitment of the tyrosine kinase Syk via its tandem SH2 domains and initiation of a downstream signaling cascade. Using Syk-deficient and Zap-70-deficient cell lines we show that hemITAM signaling is restricted to Syk and that the upstream triacidic amino acid sequence is required for signaling. Using surface plasmon resonance and phosphorylation studies, we demonstrate that the triacidic amino acids are required for phosphorylation of the YXXL. These results further emphasize the distinct nature of the proximal events in signaling by hemITAM relative to ITAM receptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The extracellularly-responsive kinase (ERK) subfamily of mitogen-activated protein kinases (MAPKs) has been implicated in the regulation of cell growth and differentiation. Activation of ERKs involves a two-step protein kinase cascade lying upstream from ERK, in which the Raf family are the MAPK kinase kinases and the MEK1/MEK2 isoforms are the MAPK kinases. The linear sequence of Raf --> MEK --> ERK constitutes the ERK cascade. Although the ERK cascade is activated through growth factor-regulated receptor protein tyrosine kinases, they are also modulated through G protein-coupled receptors (GPCRs). All four G protein subfamilies (Gq/11 Gi/o, Gs and G12/13) influence the activation state of ERKs. In this review, we describe the ERK cascade and characteristics of its activation through GPCRs. We also discuss the identity of the intervening steps that may couple agonist binding at GPCRs to activation of the ERK cascade.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective - Platelet stimulation by collagen and collagen-related peptides (CRPs) is associated with activation of protein tyrosine kinases. In the present study, we investigated the role of Src family tyrosine kinases in the initial adhesion events of human platelets to collagen and cross-linked CRP. Methods and Results - Under arterial flow conditions, a glycoprotein VI - specific substrate, cross-linked CRP, caused rapid (<2 second) platelet retention and protein tyrosine phosphorylation that were markedly decreased by the Src family kinase inhibitor pyrozolopyrimidine (PP2) or by aggregation inhibitor GRGDSP. CRP-induced platelet retention was transient, and 90% of single platelets or aggregates detached within seconds. PP2, although having no effect on RGD peptide-binding to CRP, completely blocked aggregation and tyrosine phosphorylation of Syk and phospholipase Cγ2 (PLCγ2). In contrast, PP2 weakly (<30%) suppressed firm adhesion to collagen mediated primarily by the alpha(2)beta(1) integrin. Although PP2 prevented activation of Syk and PLCgamma2 in collagen-adherent platelets, tyrosine phosphorylation of several unidentified protein bands persisted, as did autophosphorylation of pp125(FAK). Conclusions - These findings indicate that activation of Src-tyrosine kinases Syk and PLCgamma2 is not required for the initial stable attachment of human platelets to collagen and for FAK autophosphorylation. However, Src-tyrosine kinases are critical for glycoprotein VI - mediated signaling leading to platelet aggregation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a short communication in this issue (Manser et al. 2012), Christopher Miller’s group at the Institute of Psychiatry, King’s College London present an elegant and convincing set of experiments using molecular techniques to show that a brain-enriched membrane-associated protein kinase, lemur tyrosine kinase-2 (LMTK2), is directly phosphorylated by the cyclin-dependent kinase-5/p35 and this event is sufficient for LMTK2 to phosphorylate an abundant protein phosphatase, PP1C. LMTK2 has been little studied to date and, despite its name, is a kinase which phosphorylates serine or threonine residues of protein substrates. The paper adds to the evidence that this enzyme is a potentially important mediator positioned to integrate a number of intracellular signalling pathways relevant to neurodegeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is extensive evidence to show that phosphatidylinositol 3-kinase plays an important role in signaling by the immune family of receptors, which has recently been extended to include the platelet collagen receptor, glycoprotein VI. In this report we present two potential mechanisms for the regulation of this enzyme on stimulation of platelets by collagen. We show that on stimulation with collagen, the regulatory subunit of phosphatidylinositol 3-kinase associates with the tyrosine-phosphorylated form of the adapter protein linker for activator of T Cells (LAT) and the tyrosine-phosphorylated immunoreceptor tyrosine-based activation motif of the Fc receptor gamma-chain (a component of the collagen receptor complex that includes glycoprotein VI). The associations of the Fc receptor gamma-chain and LAT with p85 are rapid and supported by the Src-homology 2 domains of the regulatory subunit. We did not obtain evidence to support previous observations that the regulatory subunit of phosphatidylinositol 3-kinase is regulated through association with the tyrosine kinase Syk. The present results provide a molecular basis for the regulation of the p85/110 form of phosphatidylinositol 3-kinase by GPVI, the collagen receptor that underlies activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activation of platelets by collagen is mediated through a tyrosine kinase-dependent pathway that is associated with phosphorylation of the Fc receptor gamma chain, the tyrosine kinase syk, and phospholipase C gamma2 (PLC gamma2). We recently described a collagen-related triple-helical peptide (CRP) with the sequence GCP*(GPP*)GCP*G (single letter amino acid code: P* = hydroxyproline; Morton et al, Biochem J306:337, 1995). The cross-linked peptide is a potent stimulus of platelet activation but, unlike collagen, does not support alpha2beta1-mediated, Mg2+-dependent adhesion, suggesting that its action is independent of the integrin alpha2beta1. This finding suggests the existence of a platelet receptor other than alpha2beta1 that underlies activation. In the present study, we show that CRP stimulates tyrosine phosphorylation of the same pattern of proteins in platelets as collagen, including syk and PLC gamma2. Protein tyrosine phosphorylation induced by CRP is not altered in the absence of Mg2+ or the presence of monoclonal antibodies (MoAbs) to the integrin alpha2beta1 (MoAb 6F1 and MoAb 13), conditions that prevent the interaction of collagen with the integrin. In contrast, phosphorylation of syk and PLC gamma2 by collagen is partially reduced by MoAb 6F1 and MoAb 13 or by removal of Mg2+. This may reflect a direct role of alpha2beta1 in collagen-induced signaling events or an indirect role in which the integrin facilitates the binding of collagen to its signaling receptor. The results show an alpha2beta1-independent pathway of platelet activation by CRP that involves phosphorylation of syk and PLC gamma2. This pathway appears to contribute to platelet activation by collagen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stimulation of platelets by the extracellular matrix protein collagen leads to activation of a tyrosine kinase-dependent mechanism resulting in secretion and aggregation. Tyrosine phosphorylation of the tyrosine kinase Syk and phospholipase Cgamma2 are early events in collagen-induced activation. We recently proposed that collagen-signaling in platelets involves a receptor or a receptor-associated protein containing an immunoreceptor tyrosine-based activation motif (ITAM) enabling interaction with Syk. In this report we show that collagen stimulation of platelets causes rapid tyrosine phosphorylation of the ITAM containing Fc receptor gamma-chain and that this is precipitated by the tandem Src homology 2 (SH2) domains of Syk expressed as a fusion protein. In addition we demonstrate an association between the Fc receptor gamma-chain with endogenous Syk in collagen-stimulated platelets. The Fc receptor gamma-chain undergoes tyrosine phosphorylation in platelets stimulated by a collagen-related peptide which does not bind the integrin alpha2beta1 and by the lectin wheat germ agglutinin. In contrast, cross-linking of the platelet low affinity receptor for immune complexes, FcgammaRIIA, or stimulation by thrombin does not induce phosphorylation of the Fc receptor gamma-chain. The present results provide a molecular basis for collagen activation of platelets which is independent of the integrin alpha2beta1 and involves phosphorylation of the Fc receptor gamma-chain, its association with Syk and subsequent phosphorylation of phospholipase Cgamma2. Collagen is the first example of a nonimmune receptor stimulus to signal through a pathway closely related to signaling by immune receptors.