25 resultados para Wound


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the isolation and characterization of a hitherto unknown gram-negative, rod-shaped Neisseria-like organism from an infected wound resulting from a bite from a kinkajou. Based on both phenotypic and phylogenetic evidence, it is proposed that the unknown organism be classified as a new species, Kingella potus sp. nov.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A previously undescribed, Gram-positive, catalase-negative, coccus-shaped organism that originated from a human wound was subjected to taxonomic study. On the basis of its cellular morphology and the results of biochemical testing, the unknown organism was identified tentatively as a member of the genus Helcococcus, but it did not correspond to either of the two recognized species of this genus. Comparative 16S rRNA gene sequencing studies confirmed that the bacterium was associated phylogenetically with the genus Helcococcus, with the unidentified organism forming a hitherto unknown subline within the genus. On the basis of biochemical, molecular chemical and molecular phylogenetic evidence, it is proposed that the unknown organism that was recovered from a human wound should be classified as a novel species of the genus Helcococcus, namely Helcococcus sueciensis sp. nov. The type strain is CCUG 47334(T) ( = CIP 108183(T)).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Feeding damage to plants by insect herbivores induces the production of plant volatiles, which are attractive to the herbivores natural enemies. Little is understood about the plant biochemical pathways involved in aphid-induced plant volatile production. The aphid parasitoid Diaeretiella rapae can detect and respond to aphid-induced volatiles produced by Arabidopsis thaliana. When given experience of those volatiles, it can learn those cues and can therefore be used as a novel biosensor to detect them. The pathways involved in aphid-induced volatile production were investigated by comparing the responses of D. rapae to volatiles from a number of different transgenic mutants of A. thaliana, mutated in their octadecanoid, ethylene or salicylic acid wound-response pathways and also from wild-type plants. Plants were either undamaged or infested by the peach-potato aphid, Myzus persicae. It is demonstrated that the octadecanoid pathway and specifically the COI1 gene are required for aphid-induced volatile production. The presence of salicylic acid is also involved in volatile production. Using this model system, in combination with A. thaliana plants with single point gene mutations, has potential for the precise dissection of biochemical pathways involved in the production of aphid-induced volatiles

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Jupiter’s magnetosphere acts as a point source of near-relativistic electrons within the heliosphere. In this study, three solar cycles of Jovian electron data in near-Earth space are examined. Jovian electron intensity is found to peak for an ideal Parker spiral connection, but with considerable spread about this point. Assuming the peak in Jovian electron counts indicates the best magnetic connection to Jupiter, we find a clear trend for fast and slow solar wind to be over- and under-wound with respect to the ideal Parker spiral, respectively. This is shown to be well explained in terms of solar wind stream interactions. Thus, modulation of Jovian electrons by corotating interaction regions (CIRs) may primarily be the result of changing magnetic connection, rather than CIRs acting as barriers to cross-field diffusion. By using Jovian electrons to remote sensing magnetic connectivity with Jupiter’s magnetosphere, we suggest that they provide a means to validate solar wind models between 1 and 5 AU, even when suitable in situ solar wind observations are not available. Furthermore, using Jovian electron observations as probes of heliospheric magnetic topology could provide insight into heliospheric magnetic field braiding and turbulence, as well as any systematic under-winding of the heliospheric magnetic field relative to the Parker spiral from footpoint motion of the magnetic field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Platelets are small blood cells vital for hemostasis. Following vascular damage, platelets adhere to collagens and activate, forming a thrombus that plugs the wound and prevents blood loss. Stimulation of the platelet collagen receptor glycoprotein VI (GPVI) allows recruitment of proteins to receptor-proximal signaling complexes on the inner-leaflet of the plasma membrane. These proteins are often present at low concentrations; therefore, signaling-complex characterization using mass spectrometry is limited due to high sample complexity. We describe a method that facilitates detection of signaling proteins concentrated on membranes. Peripheral membrane proteins (reversibly associated with membranes) were eluted from human platelets with alkaline sodium carbonate. Liquid-phase isoelectric focusing and gel electrophoresis were used to identify proteins that changed in levels on membranes from GPVI-stimulated platelets. Immunoblot analysis verified protein recruitment to platelet membranes and subsequent protein phosphorylation was preserved. Hsp47, a collagen binding protein, was among the proteins identified and found to be exposed on the surface of GPVI-activated platelets. Inhibition of Hsp47 abolished platelet aggregation in response to collagen, while only partially reducing aggregation in response to other platelet agonists. We propose that Hsp47 may therefore play a role in hemostasis and thrombosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PDGF is a potent chemotactic mitogen and a strong inductor of fibroblast motility. In Swiss 3T3 fibroblasts, exposure to PDGF but not EGF or IGF-1 causes a rapid loss of actin stress fibers (SFs) and focal adhesions (FAs), which is followed by the development of retractile dendritic protrusions and induction of motility. The PDGF-specific actin reorganization was blocked by inhibition of Src-kinase and the 26S proteasome. PDGF induced Src-dependent association between the multifunctional transcription/translation regulator hnRNP-K and the mRNA-encoding myosin regulatory light-chain (MRLC)-interacting protein (MIR), a E3-ubiquitin ligase that is MRLC specific. This in turn rapidly increased MIR expression, and led to ubiquitination and proteasome-mediated degradation of MRLC. Downregulation of MIR by RNA muting prevented the reorganization of actin structures and severely reduced the migratory and wound-healing potential of PDGF-treated cells. The results show that activation of MIR and the resulting removal of diphosphorylated MRLC are essential for PDGF to instigate and maintain control over the actin-myosin-based contractile system in Swiss 3T3 fibroblasts. The PDGF induced protein destabilization through the regulation of hnRNP-K controlled ubiquitin-ligase translation identifies a novel pathway by which external stimuli can regulate phenotypic development through rapid, organelle-specific changes in the activity and stability of cytoskeletal regulators.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The immediate impetus for the colony at Lingfield in Surrey was the desire by the Women's Farm and Garden Association to enable women who had worked on the land during the First World War to be able to farm on their own account. However the motivation for the colony can also be traced back to late nineteenth-century ideals. The colony soon ran into problems which were exacerbated by the adverse agricultural conditions of the early 1920s. The association responded constructively but the colony was wound down from 1929. At one level the colony could be seen as a failure, yet this article argues that the 19 colony provided a rural community where single women lived in a mutually supportive environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective Myocardial repair following injury in mammals is restricted such that damaged areas are replaced by scar tissue, impairing cardiac function. MRL mice exhibit exceptional regenerative healing in an ear punch wound model. Some myocardial repair with restoration of heart function has also been reported following cryoinjury. Increased cardiomyocyte proliferation and a foetal liver stem cell population were implicated. We investigated molecular mechanisms facilitating myocardial repair in MRL mice to identify potential therapeutic targets in non-regenerative species. Methods Expressions of specific cell-cycle regulators that might account for regeneration (CDKs 1, 2, 4 and 6; cyclins A, E, D1 and B1; p21, p27 and E2F5) were compared by immunoblotting in MRL and control C57BL/6 ventricles during development. Flow cytometry was used to investigate stem cell populations in livers from foetal mice, and infarct sizes were compared in coronary artery-ligated and sham-treated MRL and C57BL/6 adult mice. Key findings No differences in the expressions of cell cycle regulators were observed between the two strains. Expressions of CD34+Sca1+ckit-, CD34+Sca1+ckit+ and CD34+Sca1-ckit+ increased in livers from C57BL/6 vs MRL mice. No differences were observed in infarct sizes, levels of fibrosis, Ki67 staining or cardiac function between MRL and C57BL/6 mice. Conclusions No intrinsic differences were observed in cell cycle control molecules or stem cell populations between MRL and control C57BL mouse hearts. Pathophysiologically relevant ischaemic injury is not repaired more efficiently in MRL myocardium, questioning the use of the MRL mouse as a reliable model for cardiac regeneration in response to pathophysiologically relevant forms of injury.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Satellite cells represent the stem cell population of adult skeletal muscle. The molecular mechanisms that control the proliferation of satellite cells are not well understood. In this study, we show that in response to injury, myofibres activate Wnt ligand transcription and activate a reporter cell line that is sensitive to the canonical Wnt-signalling pathway. Activated satellite cells on isolated cultured myofibres show robust expression of activated-β-catenin (Act-β-Cat), a key downstream transcriptional coactivator of canonical Wnt signalling. We provide evidence that the Wnt family of secreted glycoproteins act on satellite cells in a ligand-specific manner. Overexpression of Wnt1, Wnt3a or Wnt5a protein causes a dramatic increase in satellite-cell proliferation. By contrast, exposure of satellite cells to Wnt4 or Wnt6 diminishes this process. Moreover, we show that the prolonged satellite-cell quiescence induced by inhibitory Wnt is reversible and exposing inhibited satellite cells to stimulatory Wnt signalling restores their proliferation rate. Stimulatory Wnt proteins induce premature satellite cell BrdU incorporation as well as nuclear translocation of Act-β-Cat. Finally, we provide evidence that the Act-β-Cat translocation observed in single fibres during in vitro culture also occurs in cases of acute and chronic skeletal muscle regeneration in rodents and humans. We propose that Wnt proteins may be key factors that regulate the rate of satellite-cell proliferation on adult muscle fibres during the wound-healing response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The work of nouvelliste Annie Saumont constantly explores the phenomenon of memory, and of memories. This article identifies and nuances the various forms that this exploration takes. An introductory contextualization of author and theme is followed by the presentation of a short story, ‘Méandres’, which embodies the first quality of memory to be examined: its capacity not only to recall but also to re-evaluate a past which is thus shown to be as hypothetical as the future. Memory as guilt that moulds or puts its indelible stamp on lives is then evoked by means of examples from other stories, illustrating the gradations Saumont achieves in her investigation of the power of this complex faculty. The next section turns to her portrayal of involuntary memory. Unlike for Proust, the instances of spontaneous remembering that are experienced by her characters lunge at them down the years almost exclusively to wound or disorientate. Depictions of the memory which conserves, and is thus burdened by, secrets are then considered, and finally Saumont's evocation of characters who have different reasons to analyse the way their own and other people's memories work. The conclusion to be drawn is that for Saumont, we are our memories; the ability to master a ‘judicious interpretation’ of memory – or indeed, to forget – is, in her stories, overwhelmingly a quality to be envied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Connexins are a widespread family of membrane proteins that assemble into hexameric hemichannels, also known as connexons. Connexons regulate membrane permeability in individual cells or couple between adjacent cells to form gap junctions and thereby provide a pathway for regulated intercellular communication. We have now examined the role of connexins in platelets, blood cells that circulate in isolation, but upon tissue injury adhere to each other and the vessel wall to prevent blood loss and facilitate wound repair. METHODS AND RESULTS: We report the presence of connexins in platelets, notably connexin37, and that the formation of gap junctions within platelet thrombi is required for the control of clot retraction. Inhibition of connexin function modulated a range of platelet functional responses prior to platelet-platelet contact, and reduced laser induced thrombosis in vivo in mice. Deletion of the Cx37 gene (Gja4) in transgenic mice reduced platelet aggregation, fibrinogen binding, granule secretion and clot retraction indicating an important role for Cx37 hemichannels and gap junctions in platelet thrombus function. CONCLUSIONS: Together, these data demonstrate that platelet gap junctions and hemichannels underpin the control of haemostasis and thrombosis and represent potential therapeutic targets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prostaglandins (PG) are bioactive lipids derived from the metabolism of membrane polyunsaturated fatty acids (PUFA), and play important roles in a number of biological processes including cell division, immune responses and wound healing. Cyclooxygenase (COX) is the key enzyme in PG synthesis from arachidonic acid. The hypothesis of the present study was that expression of COX-2 in porcine intestine was dependent on the microbial load and the age of piglets. Piglets were obtained from sows raised either on outdoor free-range farms or on indoor commercial farms, and littermates were divided into three treatments: One group of piglets suckled the sow, a second group was put into an isolator and fed a milk formula, and a third group was put into the isolator fed milk formula and injected with broad spectrum antibiotics. Samples were collected from the 75% level of the small intestine at day 5, 28 and 56 of age. Tissue section from four piglets from each of these six treatment groups was analysed by immunofluorescence for COX-2 and type-IV collagen (basement membrane, defining lamina propria (LP)). Image analysis was used to determine the number of positive pixels expressing LP and epithelial COX-2. COX-2 expressing cells were observed in LP and epithelium in all porcine intestinal samples. When analysing images obtained on day 28, injection of antibiotics seemed to reduce the COX-2 expression in intestinal samples of piglets when compared to other treatments (P=0.053). No significant effect of farm, treatments or age of piglets was observed on COX-2 expressing data when analysing all data of images obtained at day 28 and 56. By double-labelling experiments, COX-2 was found not to be expressed on cell co-expressing CD45, CD16, CD163 or CD2, thus indicating that mucosal leukocytes, including dendritic cells, macrophages and NK cells did not express COX-2. Future research should investigate the role of COX-2 expression in the digestive tract in relation to pig health.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

THE clinical skills of medical professionals rely strongly on the sense of touch, combined with anatomical and diagnostic knowledge. Haptic exploratory procedures allow the expert to detect anomalies via gross and fine palpation, squeezing, and contour following. Haptic feedback is also key to medical interventions, for example when an anaesthetist inserts an epidural needle, a surgeon makes an incision, a dental surgeon drills into a carious lesion, or a veterinarian sutures a wound. Yet, current trends in medical technology and training methods involve less haptic feedback to clinicians and trainees. For example, minimally invasive surgery removes the direct contact between the patient and clinician that gives rise to natural haptic feedback, and furthermore introduces scaling and rotational transforms that confuse the relationship between movements of the hand and the surgical site. Similarly, it is thought that computer-based medical simulation and training systems require high-resolution and realistic haptic feedback to the trainee for significant training transfer to occur. The science and technology of haptics thus has great potential to affect the performance of medical procedures and learning of clinical skills. This special section is about understanding

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemical and biochemical modification of hydrogels is one strategy to create physiological constructs that maintain cell function. The aim of this study was to apply oxidised alginate hydrogels as a basis for development of a biomimetic niche for limbal epithelial stem cells that may be applied to treating corneal dysfunction. The stem phenotype of bovine limbal epithelial cells (LEC) and the viability of corneal epithelial cells (CEC) were examined in oxidised alginate gels containing collagen IV over a 3-day culture period. Oxidation increased cell viability (P wound healing therapy.