18 resultados para Water in literature
Resumo:
Hydrologic transport of dissolved organic carbon (DOC) from peat soils may differ to organo-mineral soils in how they responded to changes in flow, because of differences in soil profile and hydrology. In well-drained organo-mineral soils, low flow is through the lower mineral layer where DOC is absorbed and high flow is through the upper organic layer where DOC is produced. DOC concentrations in streams draining organo-mineral soils typically increase with flow. In saturated peat soils, both high and low flows are through an organic layer where DOC is produced. Therefore, DOC in stream water draining peat may not increase in response to changes in flow as there is no switch in flow path between a mineral and organic layer. To verify this, we conducted a high-resolution monitoring study of soil and stream water at an upland peat catchment in northern England. Our data showed a strong positive correlation between DOC concentrations at − 1 and − 5 cm depth and stream water, and weaker correlations between concentrations at − 20 to − 50 cm depth and stream water. Although near surface organic material appears to be the key source of stream water DOC in both peat and organo-mineral soils, we observed a negative correlation between stream flow and DOC concentrations instead of a positive correlation as DOC released from organic layers during low and high flow was diluted by rainfall. The differences in DOC transport processes between peat and organo-mineral soils have different implications for our understanding of long-term changes in DOC exports. While increased rainfall may cause an increase in DOC flux from peat due to an increase in water volume, it may cause a decrease in concentrations. This response is contrary to expected changes in DOC exports from organo-mineral soils, where increase rainfall is likely to result in an increase in flux and concentration.
Resumo:
Subantarctic mode water (SAMW) has been shown to be a good indicator of anthropogenic climate change in coupled climate models. SAMW in a coupled climate model and the response of modeled SAMW to increasing CO2 are examined in detail. How SAMW adjusts from climatological values toward a new equilibrium in the coupled model, with different climatological temperature and salinity properties, is shown. The combined formation rate of SAMW and Antarctic intermediate water is calculated as approximately 18 Sv (Sv ≡ 106 m3 s−1) in the Indian sector of the Southern Ocean, slightly lower than climatological values would suggest. When forced with increasing CO2, SAMW is produced at a similar rate but at lower densities. This result suggests that the rate of heat uptake in this part of the ocean will be unchanged by anthropogenic forcing. The important signal in the response of SAMW is the shift to colder and fresher values on isopycnals that is believed to be related to changes in thermodynamic surface forcing. It is shown that, given uniform forcing, SAMW is expected to enhance the signal relative to other water masses. Independent increases in surface heating or freshwater forcing can produce changes similar to those observed, but the two different types of forcing are distinguishable using separate forcing experiments, hodographs, and passive anomaly tracers. The changes in SAMW forced by increasing CO2 are dominated by surface heating, but changes to freshwater fluxes are also important.
Resumo:
Measurements of body weight, total body water and total body potassium (40K) were made serially on three occasions during pregnancy and once post partum in 27 normal pregnant women. Skinfold thickness and fat cell diameter were also measured. A model of body composition was formulated to permit the estimation of changes in fat, lean tissue and water content of the maternal body. Total maternal body fat increased during pregnancy, reaching a peak towards the end of the second trimester before diminishing. Serial measurements of fat cell diameter showed poor correlation, whilst total body fat calculated from skinfold thickness correlated well with our estimated values for total body fat in pregnancy.
Resumo:
The application of oxygen isotope ratios ({delta}18O) from freshwater bivalves as a proxy for river discharge conditions in the Rhine and Meuse rivers is investigated. We compared a dataset of water temperature and water {delta}18O values with a selection of recent shell {delta}18O records for two species of the genus Unio in order to establish: (1) whether differences between the rivers in water {delta}18O values, reflecting river discharge conditions, are recorded in unionid shells; and (2) to what extent ecological parameters influence the accuracy of bivalve shell {delta}18O values as proxies of seasonal, water oxygen isotope conditions in these rivers. The results show that shells from the two rivers differ significantly in {delta}18O values, reflecting different source waters for these two rivers. The seasonal shell {delta}18O records show truncated sinusoidal patterns with narrow peaks and wide troughs, caused by temperature fractionation and winter growth cessation. Interannual growth rate reconstructions show an ontogenetic growth rate decrease. Growth lines in the shell often, but not always, coincide with winter growth cessations in the {delta}18O record, suggesting that growth cessations in the shell {delta}18O records are a better age estimator than counting internal growth lines. Seasonal predicted and measured {delta}18O values correspond well, supporting the hypothesis that these unionids precipitate their shells in oxygen isotopic equilibrium. This means that (sub-) fossil unionids can be used to reconstruct spring-summer river discharge conditions, such as Meuse low-discharge events caused by droughts and Rhine meltwater-influx events caused by melting of snow in the Alps.
Resumo:
The antioxidant properties of caffeic acid and bovine serum albumin in oil-in-water and water-in-oil emulsions were studied. Caffeic acid (5 mmol/kg emulsion) showed good antioxidant properties in both 30% sunflower oil-in-water (OW) and 20% water-in-sunflower oil emulsions (WO), pH 5.4, during storage at 50 ºC. Although bovine serum albumin (BSA) (0.2%) had a slight antioxidant effect, the combination of caffeic acid and BSA showed a synergistic reduction in the rate of development of rancidity, with significant reductions in concentration of total volatiles, peroxide value (PV) and p-anisidine value (PA) for both emulsion types. The synergistic increase in stability of the OW and WO emulsions containing BSA and caffeic acid was 102.9 and 50.4 % respectively based on TOTOX values, which are calculated as 2PV + PA, with greater synergy calculated if based on formation of headspace volatiles, The OW emulsion was more susceptible to the development of headspace volatiles by oxidation than the WO emulsion, even though the degree of oxidation assessed by the TOTOX value was similar.
Resumo:
Since the 1990s, international water sector reforms have centred heavily on economic and market approaches. In regard to water resources management, tradable water rights have been promoted, often supported by the neoliberal model adopted in Chile. Chile's 1981 Water Code was reformed to comprise a system of water rights that could be freely traded with few restrictions. International financial institutions have embraced the Chilean model, claiming that it results in more efficient water use, and potentially fosters social and environmental benefits. However, in Chile the Water Code is deeply contested. It has been criticised for being too permissive and has produced a number of problems in practice. Moreover, attempts to modify it have become the focus of a lengthy polemic debate. This paper employs a political ecology perspective to explore the socio-environmental outcomes of water management in Chile, drawing on a case study of agriculture in the semi-arid Norte Chico. The case illustrates how large-scale farmers exert greater control over water, while peasant farmers have increasingly less access. I argue that these outcomes are facilitated by the mode of water management implemented within the framework of the Water Code. Through this preliminary examination of social equity and the environmental aspects of water resources management in Chile, I suggest that the omission of these issues from the international debates on water rights markets is a cause for concern.
Resumo:
Treated wastewater or reclaimed water is gaining recognition as a valuable water resource around the world. To assess why, where and how water reuse takes place in Jordan, semi-structured interviews were conducted with representatives of 29 key organisations in 2008. The analysis reveals that water scarcity is a key driver for water reuse. However, despite such recognition, reuse was described positively by only a small proportion of the interviewees (n = 6). Negative and neutral perceptions regarding reuse dominated and the research found that this was related to two underlying challenges: (i) the requirement for more intensive management when using reclaimed water compared with freshwater and (ii) concern over societal acceptance of water reuse. These factors were found to be associated with the risks posed to humans and their environments, combined with negative emotional and cultural responses to human waste and its applications. Numerous strategies are identified that are employed by organisations to overcome these challenges. Wastewater treatment, regulation, monitoring, the mixing of treated effluent with freshwater and limited public discussion of water reuse are all employed to achieve maximum use of reclaimed water. Each strategy presents benefits of sort, but some may paradoxically also inhibit optimal use of reclaimed water. Careful modifications to the existing strategies of Jordanian agencies, such as more open discussion of reuse, could lead to greater social, economic and environmental gains.
Resumo:
Climate change is expected to modify rainfall, temperature and catchment hydrological responses across the world, and adapting to these water-related changes is a pressing challenge. This paper reviews the impact of anthropogenic climate change on water in the UK and looks at projections of future change. The natural variability of the UK climate makes change hard to detect; only historical increases in air temperature can be attributed to anthropogenic climate forcing, but over the last 50 years more winter rainfall has been falling in intense events. Future changes in rainfall and evapotranspiration could lead to changed flow regimes and impacts on water quality, aquatic ecosystems and water availability. Summer flows may decrease on average, but floods may become larger and more frequent. River and lake water quality may decline as a result of higher water temperatures, lower river flows and increased algal blooms in summer, and because of higher flows in the winter. In communicating this important work, researchers should pay particular attention to explaining confidence and uncertainty clearly. Much of the relevant research is either global or highly localized: decision-makers would benefit from more studies that address water and climate change at a spatial and temporal scale appropriate for the decisions they make
Resumo:
The purpose of this study was to test the hypothesis that soil water content would vary spatially with distance from a tree row and that the effect would differ according to tree species. A field study was conducted on a kaolinitic Oxisol in the sub-humid highlands of western Kenya to compare soil water distribution and dynamics in a maize monoculture with that under maize (Zea mays L.) intercropped with a 3-year-old tree row of Grevillea robusta A. Cunn. Ex R. Br. (grevillea) and hedgerow of Senna spectabilis DC. (senna). Soil water content was measured at weekly intervals during one cropping season using a neutron probe. Measurements were made from 20 cm to a depth of 225 cm at distances of 75, 150, 300 and 525 cm from the tree rows. The amount of water stored was greater under the sole maize crop than the agroforestry systems, especially the grevillea-maize system. Stored soil water in the grevillea-maize system increased with increasing distance from the tree row but in the senna-maize system, it decreased between 75 and 300 cm from the hedgerow. Soil water content increased least and more slowly early in the season in the grevillea-maize system, and drying was also evident as the frequency of rain declined. Soil water content at the end of the cropping season was similar to that at the start of the season in the grevillea-maize system, but about 50 and 80 mm greater in the senna-maize and sole maize systems, respectively. The seasonal water balance showed there was 140 mm, of drainage from the sole maize system. A similar amount was lost from the agroforestry systems (about 160 mm in the grevillea-maize system and 145 mm in the senna-maize system) through drainage or tree uptake. The possible benefits of reduced soil evaporation and crop transpiration close to a tree row were not evident in the grevillea-maize system, but appeared to greatly compensate for water uptake losses in the senna-maize system. Grevillea, managed as a tree row, reduced stored soil water to a greater extent than senna, managed as a hedgerow.
Resumo:
Increased atmospheric concentrations of carbon dioxide (CO2) will benefit the yield of most crops. Two free air CO2 enrichment (FACE) meta-analyses have shown increases in yield of between 0 and 73% for C3 crops. Despite this large range, few crop modelling studies quantify the uncertainty inherent in the parameterisation of crop growth and development. We present a novel perturbed-parameter method of crop model simulation, which uses some constraints from observations, that does this. The model used is the groundnut (i.e. peanut; Arachis hypogaea L.) version of the general large-area model for annual crops (GLAM). The conclusions are of relevance to C3 crops in general. The increases in yield simulated by GLAM for doubled CO2 were between 16 and 62%. The difference in mean percentage increase between well-watered and water-stressed simulations was 6.8. These results were compared to FACE and controlled environment studies, and to sensitivity tests on two other crop models of differing levels of complexity: CROPGRO, and the groundnut model of Hammer et al. [Hammer, G.L., Sinclair, T.R., Boote, K.J., Wright, G.C., Meinke, H., Bell, M.J., 1995. A peanut simulation model. I. Model development and testing. Agron. J. 87, 1085-1093]. The relationship between CO2 and water stress in the experiments and in the models was examined. From a physiological perspective, water-stressed crops are expected to show greater CO2 stimulation than well-watered crops. This expectation has been cited in literature. However, this result is not seen consistently in either the FACE studies or in the crop models. In contrast, leaf-level models of assimilation do consistently show this result. An analysis of the evidence from these models and from the data suggests that scale (canopy versus leaf), model calibration, and model complexity are factors in determining the sign and magnitude of the interaction between CO2 and water stress. We conclude from our study that the statement that 'water-stressed crops show greater CO2 stimulation than well-watered crops' cannot be held to be universally true. We also conclude, preliminarily, that the relationship between water stress and assimilation varies with scale. Accordingly, we provide some suggestions on how studies of a similar nature, using crop models of a range of complexity, could contribute further to understanding the roles of model calibration, model complexity and scale. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The reuse of treated wastewater (reclaimed water) is particularly well suited for irrigated agriculture as it often contains significant quantities of plant essential nutrients. This work has shown that reclaimed water in Jordan can have adequate concentrations of potassium, phosphate, sulphate and magnesium to meet all or part of the crop’s requirements. To fully benefit from these inputs farmers must have an awareness of the water quality and reduce the application of chemical fertilisers accordingly. Interviews with farmers have shown that 75 per cent of farmers indirectly using reclaimed water are aware of the nutrients. Farmers’ decision making as to the application of chemical fertilisers appears to be influenced by a range of factors which include the type of crops being cultivated, the provision of training on nutrient management and the availability of information on the nutrient content of the reclaimed water.
Resumo:
The governance of water resources is prominent in both water policy agendas and academic scholarship. Political ecologists have made important advances in reconceptualising the relationship between water and society. Yet, while they have stressed both the scalar dimensions, and the politicised nature, of water governance, analyses of its scalar politics are relatively nascent. In this paper, we consider how the increased demand for water resources by the growing mining industry in Peru reconfigures and rescales water governance. In Peru, the mining industry’s thirst for water draws in, and reshapes, social relations, technologies, institutions and discourses that operate over varying spatial and temporal scales. We develop the concept of waterscape to examine these multiple ways in water is co-produced through mining, and become embedded in changing modes and structures of water governance, often beyond the watershed scale. We argue that an examination of waterscapes avoids the limitations of thinking about water in purely material terms, structuring analysis of water issues according to traditional spatial scales and institutional hierarchies, and taking these scales and structures for granted.