46 resultados para Types of sea shores
Resumo:
An initial validation of the Along Track Scanning Radiometer (ATSR) Reprocessing for Climate (ARC) retrievals of sea surface temperature (SST) is presented. ATSR-2 and Advanced ATSR (AATSR) SST estimates are compared to drifting buoy and moored buoy observations over the period 1995 to 2008. The primary ATSR estimates are of skin SST, whereas buoys measure SST below the surface. Adjustment is therefore made for the skin effect, for diurnal stratification and for differences in buoy–satellite observation time. With such adjustments, satellite-in situ differences are consistent between day and night within ~ 0.01 K. Satellite-in situ differences are correlated with differences in observation time, because of the diurnal warming and cooling of the ocean. The data are used to verify the average behaviour of physical and empirical models of the warming/cooling rates. Systematic differences between adjusted AATSR and in-situ SSTs against latitude, total column water vapour (TCWV), and wind speed are less than 0.1 K, for all except the most extreme cases (TCWV < 5 kg m–2, TCWV > 60 kg m–2). For all types of retrieval except the nadir-only two-channel (N2), regional biases are less than 0.1 K for 80% of the ocean. Global comparison against drifting buoys shows night time dual-view two-channel (D2) SSTs are warm by 0.06 ± 0.23 K and dual-view three-channel (D3) SSTs are warm by 0.06 ± 0.21 K (day-time D2: 0.07 ± 0.23 K). Nadir-only results are N2: 0.03 ± 0.33 K and N3: 0.03 ± 0.19 K showing the improved inter-algorithm consistency to ~ 0.02 K. This represents a marked improvement from the existing operational retrieval algorithms for which inter-algorithm inconsistency is > 0.5 K. Comparison against tropical moored buoys, which are more accurate than drifting buoys, gives lower error estimates (N3: 0.02 ± 0.13 K, D2: 0.03 ± 0.18 K). Comparable results are obtained for ATSR-2, except that the ATSR-2 SSTs are around 0.1 K warm compared to AATSR
Resumo:
In polar oceans, seawater freezes to form a layer of sea ice of several metres thickness that can cover up to 8% of the Earth’s surface. The modelled sea ice cover state is described by thickness and orientational distribution of interlocking, anisotropic diamond-shaped ice floes delineated by slip lines, as supported by observation. The purpose of this study is to develop a set of equations describing the mean-field sea ice stresses that result from interactions between the ice floes and the evolution of the ice floe orientation, which are simple enough to be incorporated into a climate model. The sea ice stress caused by a deformation of the ice cover is determined by employing an existing kinematic model of ice floe motion, which enables us to calculate the forces acting on the ice floes due to crushing into and sliding past each other, and then by averaging over all possible floe orientations. We describe the orientational floe distribution with a structure tensor and propose an evolution equation for this tensor that accounts for rigid body rotation of the floes, their apparent re-orientation due to new slip line formation, and change of shape of the floes due to freezing and melting. The form of the evolution equation proposed is motivated by laboratory observations of sea ice failure under controlled conditions. Finally, we present simulations of the evolution of sea ice stress and floe orientation for several imposed flow types. Although evidence to test the simulations against is lacking, the simulations seem physically reasonable.
Resumo:
1] We present a mathematical model describing the summer melting of sea ice. We simulate the evolution of melt ponds and determine area coverage and total surface ablation. The model predictions are tested for sensitivity to the melt rate of unponded ice, enhanced melt rate beneath the melt ponds, vertical seepage, and horizontal permeability. The model is initialized with surface topographies derived from laser altimetry corresponding to first-year sea ice and multiyear sea ice. We predict that there are large differences in the depth of melt ponds and the area of coverage between the two types of ice. We also find that the vertical seepage rate and the melt rate of unponded ice are important in determining the total surface ablation and area covered by melt ponds.
Resumo:
Sea-level rise (SLR) from global warming may have severe consequences for coastal cities, particularly when combined with predicted increases in the strength of tidal surges. Predicting the regional impact of SLR flooding is strongly dependent on the modelling approach and accuracy of topographic data. Here, the areas under risk of sea water flooding for London boroughs were quantified based on the projected SLR scenarios reported in Intergovernmental Panel on Climate Change (IPCC) fifth assessment report (AR5) and UK climatic projections 2009 (UKCP09) using a tidally-adjusted bathtub modelling approach. Medium- to very high-resolution digital elevation models (DEMs) are used to evaluate inundation extents as well as uncertainties. Depending on the SLR scenario and DEMs used, it is estimated that 3%–8% of the area of Greater London could be inundated by 2100. The boroughs with the largest areas at risk of flooding are Newham, Southwark, and Greenwich. The differences in inundation areas estimated from a digital terrain model and a digital surface model are much greater than the root mean square error differences observed between the two data types, which may be attributed to processing levels. Flood models from SRTM data underestimate the inundation extent, so their results may not be reliable for constructing flood risk maps. This analysis provides a broad-scale estimate of the potential consequences of SLR and uncertainties in the DEM-based bathtub type flood inundation modelling for London boroughs.
Resumo:
Sea level changes resulting from CO2-induced climate changes in ocean density and circulation have been investigated in a series of idealised experiments with the Hadley Centre HadCM3 AOGCM. Changes in the mass of the ocean were not included. In the global mean, salinity changes have a negligible effect compared with the thermal expansion of the ocean. Regionally, sea level changes are projected to deviate greatly from the global mean (standard deviation is 40% of the mean). Changes in surface fluxes of heat, freshwater and wind stress are all found to produce significant and distinct regional sea level changes, wind stress changes being the most important and the cause of several pronounced local features, while heat and freshwater flux changes affect large parts of the North Atlantic and Southern Ocean. Regional change is related mainly to density changes, with a relatively small contribution in mid and high latitudes from change in the barotropic circulation. Regional density change has an important contribution from redistribution of ocean heat content. In general, unlike in the global mean, the regional pattern of sea level change due to density change appears to be influenced almost as much by salinity changes as by temperature changes, often in opposition. Such compensation is particularly marked in the North Atlantic, where it is consistent with recent observed changes. We suggest that density compensation is not a property of climate change specifically, but a general behavior of the ocean.
Resumo:
The ultrastructure of a new microsporidian species Microgemmia vivaresi n. sp. causing liver cell xenoma formation in sea scorpions, Taurulus bubalis, is described. Stages of merogony, sporogony, and sporogenesis are mixed in the central cytoplasm of developing xenomas. All stages have unpaired nuclei. Uninucleate and multinucleate meronts lie within vacuoles formed from host endoplasmic reticulum and divide by binary or multiple fission. Sporonts, no longer in vacuoles, deposit plaques of surface coat on the plasma membrane that cause the surface to pucker. Division occurs at the Puckered stage into sporoblast mother cells, on which plaques join up to complete the surface coat. A final binary fission gives rise to sporoblasts. A dense globule, thought to be involved in polar tube synthesis, is gradually dispersed during spore maturation. Spores are broadly ovoid, have a large posterior vacuole, and measure 3.6 mu m x 2.1 pint (fresh). The polar tube has a short wide anterior section that constricts abruptly, then runs posteriad to coil about eight times around the posterior vacuole with granular contents. The polaroplast has up to 40 membranes arranged in pairs mostly attached to the wide region of the polar tube and directed posteriorty around a cytoplasm of a coarsely granular appearance. The species is placed alongside the type species Microgemmia hepaticus Ralphs and Matthews 1986 within the family Tetramicridae, which is transferred from the class Dihaplophasea to the class Haplophasea, as there is no evidence for the occurrence of a diplokaryotic phase.
Resumo:
This study analyzes the short-term consequences of visitors' use of different types of exhibits (i.e., "exemplars of phenomena" and "analogy based") together with the factors affecting visitors' understanding of and their evaluation of the use of such exhibits. One hundred and twenty five visitors (either alone or in groups) were observed during their interaction and interviewed immediately afterwards. Findings suggest that the type of exhibit constrains the nature of the understanding achieved. The use of analogical reasoning may lead to an intended causal explanation of an exhibit that is an exemplar of a phenomenon, but visitors often express misconceptions as a consequence of using this type of exhibit. Analogy-based exhibits are often not used as intended by the designer. This may be because visitors do not access the source domain intended; are unaware of the use of analogy per se (in particular, when the exhibit is of the subtype "only showing similarities between relationships"); only acquire fragmentary knowledge about the target; or fail to use analogical reasoning of which they were capable. Furthermore, exhibits related to everyday world situations are recognized to have an immediate educative value for visitors. Suggestions for enhancing the educative value of exhibits are proposed.
Resumo:
We explore the potential for making statistical decadal predictions of sea surface temperatures (SSTs) in a perfect model analysis, with a focus on the Atlantic basin. Various statistical methods (Lagged correlations, Linear Inverse Modelling and Constructed Analogue) are found to have significant skill in predicting the internal variability of Atlantic SSTs for up to a decade ahead in control integrations of two different global climate models (GCMs), namely HadCM3 and HadGEM1. Statistical methods which consider non-local information tend to perform best, but which is the most successful statistical method depends on the region considered, GCM data used and prediction lead time. However, the Constructed Analogue method tends to have the highest skill at longer lead times. Importantly, the regions of greatest prediction skill can be very different to regions identified as potentially predictable from variance explained arguments. This finding suggests that significant local decadal variability is not necessarily a prerequisite for skillful decadal predictions, and that the statistical methods are capturing some of the dynamics of low-frequency SST evolution. In particular, using data from HadGEM1, significant skill at lead times of 6–10 years is found in the tropical North Atlantic, a region with relatively little decadal variability compared to interannual variability. This skill appears to come from reconstructing the SSTs in the far north Atlantic, suggesting that the more northern latitudes are optimal for SST observations to improve predictions. We additionally explore whether adding sub-surface temperature data improves these decadal statistical predictions, and find that, again, it depends on the region, prediction lead time and GCM data used. Overall, we argue that the estimated prediction skill motivates the further development of statistical decadal predictions of SSTs as a benchmark for current and future GCM-based decadal climate predictions.
Resumo:
Under increasing greenhouse gas concentrations, ocean heat uptake moderates the rate of climate change, and thermal expansion makes a substantial contribution to sea level rise. In this paper we quantify the differences in projections among atmosphere-ocean general circulation models of the Coupled Model Intercomparison Project in terms of transient climate response, ocean heat uptake efficiency and expansion efficiency of heat. The CMIP3 and CMIP5 ensembles have statistically indistinguishable distributions in these parameters. The ocean heat uptake efficiency varies by a factor of two across the models, explaining about 50% of the spread in ocean heat uptake in CMIP5 models with CO2 increasing at 1%/year. It correlates with the ocean global-mean vertical profiles both of temperature and of temperature change, and comparison with observations suggests the models may overestimate ocean heat uptake and underestimate surface warming, because their stratification is too weak. The models agree on the location of maxima of shallow ocean heat uptake (above 700 m) in the Southern Ocean and the North Atlantic, and on deep ocean heat uptake (below 2000 m) in areas of the Southern Ocean, in some places amounting to 40% of the top-to-bottom integral in the CMIP3 SRES A1B scenario. The Southern Ocean dominates global ocean heat uptake; consequently the eddy-induced thickness diffusivity parameter, which is particularly influential in the Southern Ocean, correlates with the ocean heat uptake efficiency. The thermal expansion produced by ocean heat uptake is 0.12 m YJ−1, with an uncertainty of about 10% (1 YJ = 1024 J).