25 resultados para Two-Phase Flow In Porous Media
Resumo:
We design consistent discontinuous Galerkin finite element schemes for the approximation of a quasi-incompressible two phase flow model of Allen–Cahn/Cahn–Hilliard/Navier–Stokes–Korteweg type which allows for phase transitions. We show that the scheme is mass conservative and monotonically energy dissipative. In this case the dissipation is isolated to discrete equivalents of those effects already causing dissipation on the continuous level, that is, there is no artificial numerical dissipation added into the scheme. In this sense the methods are consistent with the energy dissipation of the continuous PDE system.
Resumo:
The migration of liquids in porous media, such as sand, has been commonly considered at high saturation levels with liquid pathways at pore dimensions. In this letter we reveal a low saturation regime observed in our experiments with droplets of extremely low volatility liquids deposited on sand. In this regime the liquid is mostly found within the grain surface roughness and in the capillary bridges formed at the contacts between the grains. The bridges act as variable-volume reservoirs and the flow is driven by the capillary pressure arising at the wetting front according to the roughness length scales. We propose that this migration (spreading) is the result of interplay between the bridge volume adjustment to this pressure distribution and viscous losses of a creeping flow within the roughness. The net macroscopic result is a special case of non-linear diffusion described by a superfast diffusion equation (SFDE) for saturation with distinctive mathematical character. We obtain solutions to a moving boundary problem defined by SFDE that robustly convey a time power law of spreading as seen in our experiments.
Resumo:
Effective medium approximations for the frequency-dependent and complex-valued effective stiffness tensors of cracked/ porous rocks with multiple solid constituents are developed on the basis of the T-matrix approach (based on integral equation methods for quasi-static composites), the elastic - viscoelastic correspondence principle, and a unified treatment of the local and global flow mechanisms, which is consistent with the principle of fluid mass conservation. The main advantage of using the T-matrix approach, rather than the first-order approach of Eshelby or the second-order approach of Hudson, is that it produces physically plausible results even when the volume concentrations of inclusions or cavities are no longer small. The new formulae, which operates with an arbitrary homogeneous (anisotropic) reference medium and contains terms of all order in the volume concentrations of solid particles and communicating cavities, take explicitly account of inclusion shape and spatial distribution independently. We show analytically that an expansion of the T-matrix formulae to first order in the volume concentration of cavities (in agreement with the dilute estimate of Eshelby) has the correct dependence on the properties of the saturating fluid, in the sense that it is consistent with the Brown-Korringa relation, when the frequency is sufficiently low. We present numerical results for the (anisotropic) effective viscoelastic properties of a cracked permeable medium with finite storage porosity, indicating that the complete T-matrix formulae (including the higher-order terms) are generally consistent with the Brown-Korringa relation, at least if we assume the spatial distribution of cavities to be the same for all cavity pairs. We have found an efficient way to treat statistical correlations in the shapes and orientations of the communicating cavities, and also obtained a reasonable match between theoretical predictions (based on a dual porosity model for quartz-clay mixtures, involving relatively flat clay-related pores and more rounded quartz-related pores) and laboratory results for the ultrasonic velocity and attenuation spectra of a suite of typical reservoir rocks. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
A direct method is presented for determining the uncertainty in reservoir pressure, flow, and net present value (NPV) using the time-dependent, one phase, two- or three-dimensional equations of flow through a porous medium. The uncertainty in the solution is modelled as a probability distribution function and is computed from given statistical data for input parameters such as permeability. The method generates an expansion for the mean of the pressure about a deterministic solution to the system equations using a perturbation to the mean of the input parameters. Hierarchical equations that define approximations to the mean solution at each point and to the field covariance of the pressure are developed and solved numerically. The procedure is then used to find the statistics of the flow and the risked value of the field, defined by the NPV, for a given development scenario. This method involves only one (albeit complicated) solution of the equations and contrasts with the more usual Monte-Carlo approach where many such solutions are required. The procedure is applied easily to other physical systems modelled by linear or nonlinear partial differential equations with uncertain data.
Resumo:
A comparison of the models of Vitti et al. (2000, J. Anim. Sci. 78, 2706-2712) and Fernandez (1995c, Livest. Prod. Sci. 41, 255-261) was carried out using two data sets on growing pigs as input. The two models compared were based on similar basic principles, although their aims and calculations differed. The Vitti model employs the rate:state formalism and describes phosphorus (P) flow between four pools representing P content in gut, blood, bone and soft tissue in growing goats. The Fernandez model describes flow and fractional recirculation between P pools in gut, blood and bone in growing pigs. The results from both models showed similar trends for P absorption from gut to blood and net retention in bone with increasing P intake, with the exception of the 65 kg results from Date Set 2 calculated using the FernAndez model. Endogenous loss from blood back to gut increased faster with increasing P intake in the FernAndez than in the Vitti model for Data Set 1. However, for Data Set 2, endogenous loss increased with increasing P intake using the Vitti model, but decreased when calculated using the FernAndez model. Incorporation of P into bone was not influenced by intake in the FernAndez model, while in the Vitti model there was an increasing trend. The FernAndez model produced a pattern of decreasing resorption in bone with increasing P intake, with one of the data sets, which was not observed when using the Vitti model. The pigs maintained their P homeostasis in blood by regulation of P excretion in urine. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The effect of phase separation and batch duration on the trophic stages of anaerobic digestion was assessed for the first time in leach beds coupled to methanogenic reactors digesting maize (Zea mays). The system was operated for consecutive batches of 7, 14 and 28 days for ~120 days. Hydrolysis rate was higher the shorter the batch, reaching 8.5 gTSdestroyed d-1 in the 7-day system. Phase separation did not affect acidification but methanogenesis was enhanced in the short feed cycle leach beds. Phase separation was inefficient on the 7-day system, where ~89% of methane was produced in the leach bed. Methane production rate increased with shortening the feed cycle, reaching 3.523 l d-1 average in the 7-day system. Low strength leachate from the leach beds decreased methanogenic activity of methanogenic reactors’ sludges. Enumeration of cellulolytic and methanogenic microorganisms indicated a constant inoculation of leach beds and methanogenic reactors through leachate recirculation.
Resumo:
Expressions for the viscosity correction function, and hence bulk complex impedance, density, compressibility, and propagation constant, are obtained for a rigid frame porous medium whose pores are prismatic with fixed cross-sectional shape, but of variable pore size distribution. The lowand high-frequency behavior of the viscosity correction function is derived for the particular case of a log-normal pore size distribution, in terms of coefficients which can, in general, be computed numerically, and are given here explicitly for the particular cases of pores of equilateral triangular, circular, and slitlike cross-section. Simple approximate formulae, based on two-point Pade´ approximants for the viscosity correction function are obtained, which avoid a requirement for numerical integration or evaluation of special functions, and their accuracy is illustrated and investigated for the three pore shapes already mentioned
Resumo:
It is shown that, for a sufficiently large value of β, two-dimensional flow on a doubly-periodic beta-plane cannot be ergodic (phase-space filling) on the phase-space surface of constant energy and enstrophy. A corresponding result holds for flow on the surface of a rotating sphere, for a sufficiently rapid rotation rate Ω. This implies that the higher-order, non-quadratic invariants are exerting a significant influence on the statistical evolution of the flow. The proof relies on the existence of a finite-amplitude Liapunov stability theorem for zonally symmetric basic states with a non-vanishing absolute-vorticity gradient. When the domain size is much larger than the size of a typical eddy, then a sufficient condition for non-ergodicity is that the wave steepness ε < 1, where ε = 2[surd radical]2Z/βU in the planar case and $\epsilon = 2^{\frac{1}{4}} a^{\frac{5}{2}}Z^{\frac{7}{4}}/\Omega U^{\frac{5}{2}}$ in the spherical case, and where Z is the enstrophy, U the r.m.s. velocity, and a the radius of the sphere. This result may help to explain why numerical simulations of unforced beta-plane turbulence (in which ε decreases in time) seem to evolve into a non-ergodic regime at large scales.
Resumo:
In this paper we have proposed and analyzed a simple mathematical model consisting of four variables, viz., nutrient concentration, toxin producing phytoplankton (TPP), non-toxic phytoplankton (NTP), and toxin concentration. Limitation in the concentration of the extracellular nutrient has been incorporated as an environmental stress condition for the plankton population, and the liberation of toxic chemicals has been described by a monotonic function of extracellular nutrient. The model is analyzed and simulated to reproduce the experimental findings of Graneli and Johansson [Graneli, E., Johansson, N., 2003. Increase in the production of allelopathic Prymnesium parvum cells grown under N- or P-deficient conditions. Harmful Algae 2, 135–145]. The robustness of the numerical experiments are tested by a formal parameter sensitivity analysis. As the first theoretical model consistent with the experiment of Graneli and Johansson (2003), our results demonstrate that, when nutrient-deficient conditions are favorable for the TPP population to release toxic chemicals, the TPP species control the bloom of other phytoplankton species which are non-toxic. Consistent with the observations made by Graneli and Johansson (2003), our model overcomes the limitation of not incorporating the effect of nutrient-limited toxic production in several other models developed on plankton dynamics.
Resumo:
The flow dynamics of crystal-rich high-viscosity magma is likely to be strongly influenced by viscous and latent heat release. Viscous heating is observed to play an important role in the dynamics of fluids with temperature-dependent viscosities. The growth of microlite crystals and the accompanying release of latent heat should play a similar role in raising fluid temperatures. Earlier models of viscous heating in magmas have shown the potential for unstable (thermal runaway) flow as described by a Gruntfest number, using an Arrhenius temperature dependence for the viscosity, but have not considered crystal growth or latent heating. We present a theoretical model for magma flow in an axisymmetric conduit and consider both heating effects using Finite Element Method techniques. We consider a constant mass flux in a 1-D infinitesimal conduit segment with isothermal and adiabatic boundary conditions and Newtonian and non-Newtonian magma flow properties. We find that the growth of crystals acts to stabilize the flow field and make the magma less likely to experience a thermal runaway. The additional heating influences crystal growth and can counteract supercooling from degassing-induced crystallization and drive the residual melt composition back towards the liquidus temperature. We illustrate the models with results generated using parameters appropriate for the andesite lava dome-forming eruption at Soufriere Hills Volcano, Montserrat. These results emphasize the radial variability of the magma. Both viscous and latent heating effects are shown to be capable of playing a significant role in the eruption dynamics of Soufriere Hills Volcano. Latent heating is a factor in the top two kilometres of the conduit and may be responsible for relatively short-term (days) transients. Viscous heating is less restricted spatially, but because thermal runaway requires periods of hundreds of days to be achieved, the process is likely to be interrupted. Our models show that thermal evolution of the conduit walls could lead to an increase in the effective diameter of flow and an increase in flux at constant magma pressure.