27 resultados para Techniques: images processing
Resumo:
1. There is concern over the possibility of unwanted environmental change following transgene movement from genetically modified (GM) rapeseed Brassica napus to its wild and weedy relatives. 2. The aim of this research was to develop a remote sensing-assisted methodology to help quantify gene flow from crops to their wild relatives over wide areas. Emphasis was placed on locating sites of sympatry, where the frequency of gene flow is likely to be highest, and on measuring the size of rapeseed fields to allow spatially explicit modelling of wind-mediated pollen-dispersal patterns. 3. Remote sensing was used as a tool to locate rapeseed fields, and a variety of image-processing techniques was adopted to facilitate the compilation of a spatially explicit profile of sympatry between the crop and Brassica rapa. 4. Classified satellite images containing rapeseed fields were first used to infer the spatial relationship between donor rapeseed fields and recipient riverside B. rapa populations. Such images also have utility for improving the efficiency of ground surveys by identifying probable sites of sympatry. The same data were then also used for the calculation of mean field size. 5. This paper forms a companion paper to Wilkinson et al. (2003), in which these elements were combined to produce a spatially explicit profile of hybrid formation over the UK. The current paper demonstrates the value of remote sensing and image processing for large-scale studies of gene flow, and describes a generic method that could be applied to a variety of crops in many countries. 6. Synthesis and applications. The decision to approve or prevent the release of a GM cultivar is made at a national rather than regional level. It is highly desirable that data relating to the decision-making process are collected at the same scale, rather than relying on extrapolation from smaller experiments designed at the plot, field or even regional scale. It would be extremely difficult and labour intensive to attempt to carry out such large-scale investigations without the use of remote-sensing technology. This study used rapeseed in the UK as a model to demonstrate the value of remote sensing in assembling empirical information at a national level.
Resumo:
1.There is concern over the possibility of unwanted environmental change following transgene movement from genetically modified (GM) rapeseed Brassica napus to its wild and weedy relatives. 2. The aim of this research was to develop a remote sensing-assisted methodology to help quantify gene flow from crops to their wild relatives over wide areas. Emphasis was placed on locating sites of sympatry, where the frequency of gene flow is likely to be highest, and on measuring the size of rapeseed fields to allow spatially explicit modelling of wind-mediated pollen-dispersal patterns. 3. Remote sensing was used as a tool to locate rapeseed fields, and a variety of image-processing techniques was adopted to facilitate the compilation of a spatially explicit profile of sympatry between the crop and Brassica rapa. 4. Classified satellite images containing rapeseed fields were first used to infer the spatial relationship between donor rapeseed fields and recipient riverside B. rapa populations. Such images also have utility for improving the efficiency of ground surveys by identifying probable sites of sympatry. The same data were then also used for the calculation of mean field size. 5. This paper forms a companion paper to Wilkinson et al. (2003), in which these elements were combined to produce a spatially explicit profile of hybrid formation over the UK. The current paper demonstrates the value of remote sensing and image processing for large-scale studies of gene flow, and describes a generic method that could be applied to a variety of crops in many countries. 6.Synthesis and applications. The decision to approve or prevent the release of a GM cultivar is made at a national rather than regional level. It is highly desirable that data relating to the decision-making process are collected at the same scale, rather than relying on extrapolation from smaller experiments designed at the plot, field or even regional scale. It would be extremely difficult and labour intensive to attempt to carry out such large-scale investigations without the use of remote-sensing technology. This study used rapeseed in the UK as a model to demonstrate the value of remote sensing in assembling empirical information at a national level.
Resumo:
Advances in hardware and software technology enable us to collect, store and distribute large quantities of data on a very large scale. Automatically discovering and extracting hidden knowledge in the form of patterns from these large data volumes is known as data mining. Data mining technology is not only a part of business intelligence, but is also used in many other application areas such as research, marketing and financial analytics. For example medical scientists can use patterns extracted from historic patient data in order to determine if a new patient is likely to respond positively to a particular treatment or not; marketing analysts can use extracted patterns from customer data for future advertisement campaigns; finance experts have an interest in patterns that forecast the development of certain stock market shares for investment recommendations. However, extracting knowledge in the form of patterns from massive data volumes imposes a number of computational challenges in terms of processing time, memory, bandwidth and power consumption. These challenges have led to the development of parallel and distributed data analysis approaches and the utilisation of Grid and Cloud computing. This chapter gives an overview of parallel and distributed computing approaches and how they can be used to scale up data mining to large datasets.
Resumo:
The paper reports an interactive tool for calibrating a camera, suitable for use in outdoor scenes. The motivation for the tool was the need to obtain an approximate calibration for images taken with no explicit calibration data. Such images are frequently presented to research laboratories, especially in surveillance applications, with a request to demonstrate algorithms. The method decomposes the calibration parameters into intuitively simple components, and relies on the operator interactively adjusting the parameter settings to achieve a visually acceptable agreement between a rectilinear calibration model and his own perception of the scene. Using the tool, we have been able to calibrate images of unknown scenes, taken with unknown cameras, in a matter of minutes. The standard of calibration has proved to be sufficient for model-based pose recovery and tracking of vehicles.
Resumo:
In this paper, we introduce a novel high-level visual content descriptor which is devised for performing semantic-based image classification and retrieval. The work can be treated as an attempt to bridge the so called “semantic gap”. The proposed image feature vector model is fundamentally underpinned by the image labelling framework, called Collaterally Confirmed Labelling (CCL), which incorporates the collateral knowledge extracted from the collateral texts of the images with the state-of-the-art low-level image processing and visual feature extraction techniques for automatically assigning linguistic keywords to image regions. Two different high-level image feature vector models are developed based on the CCL labelling of results for the purposes of image data clustering and retrieval respectively. A subset of the Corel image collection has been used for evaluating our proposed method. The experimental results to-date already indicates that our proposed semantic-based visual content descriptors outperform both traditional visual and textual image feature models.
Resumo:
Phenolic compounds in wastewaters are difficult to treat using the conventional biological techniques such as activated sludge processes because of their bio-toxic and recalcitrant properties and the high volumes released from various chemical, pharmaceutical and other industries. In the current work, a modified heterogeneous advanced Fenton process (AFP) is presented as a novel methodology for the treatment of phenolic wastewater. The modified AFP, which is a combination of hydrodynamic cavitation generated using a liquid whistle reactor and the AFP is a promising technology for wastewaters containing high organic content. The presence of hydrodynamic cavitation in the treatment scheme intensifies the Fenton process by generation of additional free radicals. Also, the turbulence produced during the hydrodynamic cavitation process increases the mass transfer rates as well as providing better contact between the pseudo-catalyst surfaces and the reactants. A multivariate design of experiments has been used to ascertain the influence of hydrogen peroxide dosage and iron catalyst loadings on the oxidation performance of the modified AFP. High er TOC removal rates were achieved with increased concentrations of hydrogen peroxide. In contrast, the effect of catalyst loadings was less important on the TOC removal rate under conditions used in this work although there is an optimum value of this parameter. The concentration of iron species in the reaction solution was measured at 105 min and its relationship with the catalyst loadings and hydrogen peroxide level is presented.
Resumo:
Objective: Previous research has indicated that temporal factors [specifically, the duration of interstimulus intervals (ISI) during a threat processing task] may influence the nature of processing biases exhibited in nonclinical populations with some degree of eating disorder psychopathology (Meyer et al., Int J Eat Disord, 27, 405-410, 2000). The current study aimed to test this hypothesis by investigating attentional biases for eating-disorder-relevant images and irrelevant visual images (animals) in patients with eating disorders (n = 23) and psychiatric (n = 19) and nonpsychiatric (n = 65) controls. Method: A dot probe task was modified from previous research (Shafran et al., Int Eat Disord, 40, 369-380, 2007), whereby an original ISI of 500 ms was increased to 2.000 ms. Results: Patients with an eating disorder continued to display a bias in the processing of weight stimuli. However, biases noted in previous research for shape and weight stimuli disappeared when the ISI duration was increased in this way. Conclusion: These findings highlight the importance of temporal factors in whether processing biases are displayed and may point to ways in which biases actually work in this population. However, further research is warranted. (C) 2008 by Wiley Periodicals, Inc.
Apodisation, denoising and system identification techniques for THz transients in the wavelet domain
Resumo:
This work describes the use of a quadratic programming optimization procedure for designing asymmetric apodization windows to de-noise THz transient interferograms and compares these results to those obtained when wavelet signal processing algorithms are adopted. A systems identification technique in the wavelet domain is also proposed for the estimation of the complex insertion loss function. The proposed techniques can enhance the frequency dependent dynamic range of an experiment and should be of particular interest to the THz imaging and tomography community. Future advances in THz sources and detectors are likely to increase the signal-to-noise ratio of the recorded THz transients and high quality apodization techniques will become more important, and may set the limit on the achievable accuracy of the deduced spectrum.
Resumo:
In this paper we report the degree of reliability of image sequences taken by off-the-shelf TV cameras for modeling camera rotation and reconstructing 3D structure using computer vision techniques. This is done in spite of the fact that computer vision systems usually use imaging devices that are specifically designed for the human vision. Our scenario consists of a static scene and a mobile camera moving through the scene. The scene is any long axial building dominated by features along the three principal orientations and with at least one wall containing prominent repetitive planar features such as doors, windows bricks etc. The camera is an ordinary commercial camcorder moving along the axial axis of the scene and is allowed to rotate freely within the range +/- 10 degrees in all directions. This makes it possible that the camera be held by a walking unprofessional cameraman with normal gait, or to be mounted on a mobile robot. The system has been tested successfully on sequence of images of a variety of structured, but fairly cluttered scenes taken by different walking cameramen. The potential application areas of the system include medicine, robotics and photogrammetry.
Resumo:
The simulation and development work that has been undertaken to produce a signal equaliser used to improve the data rates from oil well logging instruments is presented. The instruments are lowered into the drill bore hole suspended by a cable which has poor electrical characteristics. The equaliser described in the paper corrects for the distortions that occur from the cable (dispersion and attenuation) with the result that the instrument can send data at 100 K.bits/second down its own suspension cable of 12 Km in length. The use of simulation techniques and tools were invaluable in generating a model for the distortions and proved to be a useful tool when site testing was not available.
Resumo:
A near real-time flood detection algorithm giving a synoptic overview of the extent of flooding in both urban and rural areas, and capable of working during night-time and day-time even if cloud was present, could be a useful tool for operational flood relief management. The paper describes an automatic algorithm using high resolution Synthetic Aperture Radar (SAR) satellite data that builds on existing approaches, including the use of image segmentation techniques prior to object classification to cope with the very large number of pixels in these scenes. Flood detection in urban areas is guided by the flood extent derived in adjacent rural areas. The algorithm assumes that high resolution topographic height data are available for at least the urban areas of the scene, in order that a SAR simulator may be used to estimate areas of radar shadow and layover. The algorithm proved capable of detecting flooding in rural areas using TerraSAR-X with good accuracy, and in urban areas with reasonable accuracy. The accuracy was reduced in urban areas partly because of TerraSAR-X’s restricted visibility of the ground surface due to radar shadow and layover.
Resumo:
In situ analysis has become increasingly important for contaminated land investigation and remediation. At present, portable techniques are used mainly as scanning tools to assess the spread and magnitude of the contamination, and are an adjunct to conventional laboratory analyses. A site in Cornwall, containing naturally occurring radioactive material (NORM), provided an opportunity for Reading University PhD student Anna Kutner to compare analytical data collected in situ with data generated by laboratory-based methods. The preliminary results in this paper extend the author‟s poster presentation at last September‟s GeoSpec2010 conference held in Lancaster.
Resumo:
This paper discusses how numerical gradient estimation methods may be used in order to reduce the computational demands on a class of multidimensional clustering algorithms. The study is motivated by the recognition that several current point-density based cluster identification algorithms could benefit from a reduction of computational demand if approximate a-priori estimates of the cluster centres present in a given data set could be supplied as starting conditions for these algorithms. In this particular presentation, the algorithm shown to benefit from the technique is the Mean-Tracking (M-T) cluster algorithm, but the results obtained from the gradient estimation approach may also be applied to other clustering algorithms and their related disciplines.