44 resultados para TO-NOISE RATIO


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Asynchronous Optical Sampling has the potential to improve signal to noise ratio in THz transient sperctrometry. The design of an inexpensive control scheme for synchronising two femtosecond pulse frequency comb generators at an offset frequency of 20 kHz is discussed. The suitability of a range of signal processing schemes adopted from the Systems Identification and Control Theory community for further processing recorded THz transients in the time and frequency domain are outlined. Finally, possibilities for femtosecond pulse shaping using genetic algorithms are mentioned.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using experiments with an atmospheric general circulation model, the climate impacts of a basin-scale warming or cooling of the North Atlantic Ocean are investigated. Multidecadal fluctuations with this pattern were observed during the twentieth century, and similar variations--but with larger amplitude--are believed to have occurred in the more distant past. It is found that in all seasons the response to warming the North Atlantic is strongest, in the sense of highest signal-to-noise ratio, in the Tropics. However there is a large seasonal cycle in the climate impacts. The strongest response is found in boreal summer and is associated with suppressed precipitation and elevated temperatures over the lower-latitude parts of North and South America. In August­-September-­October there is a significant reduction in the vertical shear in the main development region for Atlantic hurricanes. In winter and spring, temperature anomalies over land in the extratropics are governed by dynamical changes in circulation rather than simply reflecting a thermodynamic response to the warming or cooling of the ocean. The tropical climate response is primarily forced by the tropical SST anomalies, and the major features are in line with simple models of the tropical circulation response to diabatic heating anomalies. The extratropical climate response is influenced both by tropical and higher-latitude SST anomalies and exhibits nonlinear sensitivity to the sign of the SST forcing. Comparisons with multidecadal changes in sea level pressure observed in the twentieth century support the conclusion that the impact of North Atlantic SST change is most important in summer, but also suggest a significant influence in lower latitudes in autumn and winter. Significant climate impacts are not restricted to the Atlantic basin, implying that the Atlantic Ocean could be an important driver of global decadal variability. The strongest remote impacts are found to occur in the tropical Pacific region in June­-August and September­-November. Surface anomalies in this region have the potential to excite coupled ocean­atmosphere feedbacks, which are likely to play an important role in shaping the ultimate climate response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We separate and quantify the sources of uncertainty in projections of regional (*2,500 km) precipitation changes for the twenty-first century using the CMIP3 multi-model ensemble, allowing a direct comparison with a similar analysis for regional temperature changes. For decadal means of seasonal mean precipitation, internal variability is the dominant uncertainty for predictions of the first decade everywhere, and for many regions until the third decade ahead. Model uncertainty is generally the dominant source of uncertainty for longer lead times. Scenario uncertainty is found to be small or negligible for all regions and lead times, apart from close to the poles at the end of the century. For the global mean, model uncertainty dominates at all lead times. The signal-to-noise ratio (S/N) of the precipitation projections is highest at the poles but less than 1 almost everywhere else, and is far lower than for temperature projections. In particular, the tropics have the highest S/N for temperature, but the lowest for precipitation. We also estimate a ‘potential S/N’ by assuming that model uncertainty could be reduced to zero, and show that, for regional precipitation, the gains in S/N are fairly modest, especially for predictions of the next few decades. This finding suggests that adaptation decisions will need to be made in the context of high uncertainty concerning regional changes in precipitation. The potential to narrow uncertainty in regional temperature projections is far greater. These conclusions on S/N are for the current generation of models; the real signal may be larger or smaller than the CMIP3 multi-model mean. Also note that the S/N for extreme precipitation, which is more relevant for many climate impacts, may be larger than for the seasonal mean precipitation considered here.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Asynchronous Optical Sampling (ASOPS) [1,2] and frequency comb spectrometry [3] based on dual Ti:saphire resonators operated in a master/slave mode have the potential to improve signal to noise ratio in THz transient and IR sperctrometry. The multimode Brownian oscillator time-domain response function described by state-space models is a mathematically robust framework that can be used to describe the dispersive phenomena governed by Lorentzian, Debye and Drude responses. In addition, the optical properties of an arbitrary medium can be expressed as a linear combination of simple multimode Brownian oscillator functions. The suitability of a range of signal processing schemes adopted from the Systems Identification and Control Theory community for further processing the recorded THz transients in the time or frequency domain will be outlined [4,5]. Since a femtosecond duration pulse is capable of persistent excitation of the medium within which it propagates, such approach is perfectly justifiable. Several de-noising routines based on system identification will be shown. Furthermore, specifically developed apodization structures will be discussed. These are necessary because due to dispersion issues, the time-domain background and sample interferograms are non-symmetrical [6-8]. These procedures can lead to a more precise estimation of the complex insertion loss function. The algorithms are applicable to femtosecond spectroscopies across the EM spectrum. Finally, a methodology for femtosecond pulse shaping using genetic algorithms aiming to map and control molecular relaxation processes will be mentioned.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of forage conservation method on plasma lipids, mammary lipogenesis, and milk fat were examined in 2 complementary experiments. Treatments comprised fresh grass, hay, or untreated (UTS) or formic acid treated silage (FAS) prepared from the same grass sward. Preparation of conserved forages coincided with the collection of samples from cows fed fresh grass. In the first experiment, 5 multiparous Finnish Ayrshire cows (229 d in milk) were used to compare a diet based on fresh grass followed by hay during 2 consecutive 14-d periods, separated by a 5-d transition during which extensively wilted grass was fed. In the second experiment, 5 multiparous Finnish Ayrshire cows (53 d in milk) were assigned to 1 of 2 blocks and allocated treatments according to a replicated 3 × 3 Latin square design, with 14-d periods to compare hay, UTS, and FAS. Cows received 7 or 9 kg/d of the same concentrate in experiments 1 and 2, respectively. Arterial concentrations of triacylglycerol (TAG) and phospholipid were higher in cows fed fresh grass, UTS, and FAS compared with hay. Nonesterified fatty acid (NEFA) concentrations and the relative abundance of 18:2n-6 and 18:3n-3 in TAG of arterial blood were also higher in cows fed fresh grass than conserved forages. On all diets, TAG was the principle source of fatty acids (FA) for milk fat synthesis, whereas mammary extraction of NEFA was negligible, except during zero-grazing, which was associated with a lower, albeit positive calculated energy balance. Mammary FA uptake was higher and the synthesis of 16:0 lower in cows fed fresh grass than hay. Conservation of grass by drying or ensiling had no influence on mammary extraction of TAG and NEFA, despite an increase in milk fat secretion for silages compared with hay and for FAS than UTS. Relative to hay, milk fat from fresh grass contained lower 12:0, 14:0, and 16:0 and higher S3,R7,R11,15-tetramethyl-16:0, cis-9 18:1, trans-11 18:1, cis-9,trans-11 18:2, 18:2n-6, and 18:3n-3 concentrations. Even though conserved forages altered mammary lipogenesis, differences in milk FA composition were relatively minor, other than a higher enrichment of S3,R7,R11,15-tetramethyl-16:0 in milk from silages compared with hay. In conclusion, differences in milk fat composition on fresh grass relative to conserved forages were associated with a lower energy balance, increased uptake of preformed FA, and decreased synthesis of 16:0 de novo in the mammary glands, in the absence of alterations in stearoyl-coenzyme A desaturase activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mobile-to-mobile (M-to-M) communications are expected to play a crucial role in future wireless systems and networks. In this paper, we consider M-to-M multiple-input multiple-output (MIMO) maximal ratio combining system and assess its performance in spatially correlated channels. The analysis assumes double-correlated Rayleigh-and-Lognormal fading channels and is performed in terms of average symbol error probability, outage probability, and ergodic capacity. To obtain the receive and transmit spatial correlation functions needed for the performance analysis, we used a three-dimensional (3D) M-to-M MIMO channel model, which takes into account the effects of fast fading and shadowing. The expressions for the considered metrics are derived as a function of the average signal-to-noise ratio per receive antenna in closed-form and are further approximated using the recursive adaptive Simpson quadrature method. Numerical results are provided to show the effects of system parameters, such as distance between antenna elements, maximum elevation angle of scatterers, orientation angle of antenna array in the x–y plane, angle between the x–y plane and the antenna array orientation, and degree of scattering in the x–y plane, on the system performance. Copyright © 2011 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since 2007 a large decline in Arctic sea ice has been observed. The large-scale atmospheric circulation response to this decline is investigated in ERA-Interim reanalyses and HadGEM3 climate model experiments. In winter, post-2007 observed circulation anomalies over the Arctic, North Atlantic and Eurasia are small compared to interannual variability. In summer, the post-2007 observed circulation is dominated by an anticyclonic anomaly over Greenland which has a large signal-to-noise ratio. Climate model experiments driven by observed SST and sea ice anomalies are able to capture the summertime pattern of observed circulation anomalies, although the magnitude is a third of that observed. The experiments suggest high SSTs and reduced sea ice in the Labrador Sea lead to positive temperature anomalies in the lower troposphere which weaken the westerlies over North America through thermal wind balance. The experiments also capture cyclonic anomalies over Northwest Europe, which are consistent with downstream Rossby wave propagation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective. Functional near-infrared spectroscopy (fNIRS) is an emerging technique for the in vivo assessment of functional activity of the cerebral cortex as well as in the field of brain–computer interface (BCI) research. A common challenge for the utilization of fNIRS in these areas is a stable and reliable investigation of the spatio-temporal hemodynamic patterns. However, the recorded patterns may be influenced and superimposed by signals generated from physiological processes, resulting in an inaccurate estimation of the cortical activity. Up to now only a few studies have investigated these influences, and still less has been attempted to remove/reduce these influences. The present study aims to gain insights into the reduction of physiological rhythms in hemodynamic signals (oxygenated hemoglobin (oxy-Hb), deoxygenated hemoglobin (deoxy-Hb)). Approach. We introduce the use of three different signal processing approaches (spatial filtering, a common average reference (CAR) method; independent component analysis (ICA); and transfer function (TF) models) to reduce the influence of respiratory and blood pressure (BP) rhythms on the hemodynamic responses. Main results. All approaches produce large reductions in BP and respiration influences on the oxy-Hb signals and, therefore, improve the contrast-to-noise ratio (CNR). In contrast, for deoxy-Hb signals CAR and ICA did not improve the CNR. However, for the TF approach, a CNR-improvement in deoxy-Hb can also be found. Significance. The present study investigates the application of different signal processing approaches to reduce the influences of physiological rhythms on the hemodynamic responses. In addition to the identification of the best signal processing method, we also show the importance of noise reduction in fNIRS data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current commercially available Doppler lidars provide an economical and robust solution for measuring vertical and horizontal wind velocities, together with the ability to provide co- and cross-polarised backscatter profiles. The high temporal resolution of these instruments allows turbulent properties to be obtained from studying the variation in radial velocities. However, the instrument specifications mean that certain characteristics, especially the background noise behaviour, become a limiting factor for the instrument sensitivity in regions where the aerosol load is low. Turbulent calculations require an accurate estimate of the contribution from velocity uncertainty estimates, which are directly related to the signal-to-noise ratio. Any bias in the signal-to-noise ratio will propagate through as a bias in turbulent properties. In this paper we present a method to correct for artefacts in the background noise behaviour of commercially available Doppler lidars and reduce the signal-to-noise ratio threshold used to discriminate between noise, and cloud or aerosol signals. We show that, for Doppler lidars operating continuously at a number of locations in Finland, the data availability can be increased by as much as 50 % after performing this background correction and subsequent reduction in the threshold. The reduction in bias also greatly improves subsequent calculations of turbulent properties in weak signal regimes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For the very large nonlinear dynamical systems that arise in a wide range of physical, biological and environmental problems, the data needed to initialize a numerical forecasting model are seldom available. To generate accurate estimates of the expected states of the system, both current and future, the technique of ‘data assimilation’ is used to combine the numerical model predictions with observations of the system measured over time. Assimilation of data is an inverse problem that for very large-scale systems is generally ill-posed. In four-dimensional variational assimilation schemes, the dynamical model equations provide constraints that act to spread information into data sparse regions, enabling the state of the system to be reconstructed accurately. The mechanism for this is not well understood. Singular value decomposition techniques are applied here to the observability matrix of the system in order to analyse the critical features in this process. Simplified models are used to demonstrate how information is propagated from observed regions into unobserved areas. The impact of the size of the observational noise and the temporal position of the observations is examined. The best signal-to-noise ratio needed to extract the most information from the observations is estimated using Tikhonov regularization theory. Copyright © 2005 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance of boreal winter forecasts made with the European Centre for Medium-Range Weather Forecasts (ECMWF) System 11 Seasonal Forecasting System is investigated through analyses of ensemble hindcasts for the period 1987-2001. The predictability, or signal-to-noise ratio, associated with the forecasts, and the forecast skill are examined. On average, forecasts of 500 hPa geopotential height (GPH) have skill in most of the Tropics and in a few regions of the extratropics. There is broad, but not perfect, agreement between regions of high predictability and regions of high skill. However, model errors are also identified, in particular regions where the forecast ensemble spread appears too small. For individual winters the information provided by t-values, a simple measure of the forecast signal-to-noise ratio, is investigated. For 2 m surface air temperature (T2m), highest t-values are found in the Tropics but there is considerable interannual variability, and in the tropical Atlantic and Indian basins this variability is not directly tied to the El Nino Southern Oscillation. For GPH there is also large interannual variability in t-values, but these variations cannot easily be predicted from the strength of the tropical sea-surface-temperature anomalies. It is argued that the t-values for 500 hPa GPH can give valuable insight into the oceanic forcing of the atmosphere that generates predictable signals in the model. Consequently, t-values may be a useful tool for understanding, at a mechanistic level, forecast successes and failures. Lastly, the extent to which t-values are useful as a predictor of forecast skill is investigated. For T2m, t-values provide a useful predictor of forecast skill in both the Tropics and extratropics. Except in the equatorial east Pacific, most of the information in t-values is associated with interannual variability of the ensemble-mean forecast rather than interannual variability of the ensemble spread. For GPH, however, t-values provide a useful predictor of forecast skill only in the tropical Pacific region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Discrepancies between recent global earth albedo anomaly data obtained from the climate models, space and ground observations call for a new and better earth reflectance measurement technique. The SALEX (Space Ashen Light Explorer) instrument is a space-based visible and IR instrument for precise estimation of the global earth albedo by measuring the ashen light reflected off the shadowy side of the Moon from the low earth orbit. The instrument consists of a conventional 2-mirror telescope, a pair of a 3-mirror visible imager and an IR bolometer. The performance of this unique multi-channel optical system is sensitive to the stray light contamination due to the complex optical train incorporating several reflecting and refracting elements, associated mounts and the payload mechanical enclosure. This could be further aggravated by the very bright and extended observation target (i.e. the Moon). In this paper, we report the details of extensive stray light analysis including ghosts and cross-talks, leading to the optimum set of stray light precautions for the highest signal-to-noise ratio attainable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data are presented for a pH-adjustable liquid UV-matrix-assisted laser desorption ionization (MALDI) matrix for mass spectrometry analysis. The liquid matrix system possesses high analytical sensitivity within the same order of magnitude as that achievable by the commonly used solid UV-MALDI matrices such as 2,5-dihydroxybenzoic acid but with improved spot homogeneity and reproducibility. The pH of the matrix has been adjusted by the addition of up to 0.35% trifluoroacetic acid and up to 200 mM ammonium bicarbonate, achieving an on-target pH range of 3.5-8.6. Alteration of the pH does not seem to affect the overall sample signal intensity or signal-to-noise ratio achievable, nor does it affect the individual peptide ion signals from a mixture of peptides with varying isoelectric points (p1). In addition, the pH adjustment has allowed for the performance of a tryptic digest within the diluted pH-optimized liquid matrix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this paper is to study the impact of channel state information on the design of cooperative transmission protocols. This is motivated by the fact that the performance gain achieved by cooperative diversity comes at the price of the extra bandwidth resource consumption. Several opportunistic relaying strategies are developed to fully utilize the different types of a priori channel information. The information-theoretic measures such as outage probability and diversity-multiplexing tradeoff are developed for the proposed protocols. The analytical and numerical results demonstrate that the use of such a priori information increases the spectral efficiency of cooperative diversity, especially at low signal-to-noise ratio.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work describes the use of a quadratic programming optimization procedure for designing asymmetric apodization windows to de-noise THz transient interferograms and compares these results to those obtained when wavelet signal processing algorithms are adopted. A systems identification technique in the wavelet domain is also proposed for the estimation of the complex insertion loss function. The proposed techniques can enhance the frequency dependent dynamic range of an experiment and should be of particular interest to the THz imaging and tomography community. Future advances in THz sources and detectors are likely to increase the signal-to-noise ratio of the recorded THz transients and high quality apodization techniques will become more important, and may set the limit on the achievable accuracy of the deduced spectrum.