28 resultados para TEMPORAL DYNAMICS
Resumo:
An individual’s affective style is influenced by many things, including the manner in which an individual responds to an emotional challenge. Emotional response is composed of a number of factors, two of which are the initial reactivity to an emotional stimulus and the subsequent recovery once the stimulus terminates or ceases to be relevant. However, most neuroimaging studies examining emotional processing in humans focus on the magnitude of initial reactivity to a stimulus rather than the prolonged response. In this study, we use functional magnetic resonance imaging to study the time course of amygdala activity in healthy adults in response to presentation of negative images. We split the amygdala time course into an initial reactivity period and a recovery period beginning after the offset of the stimulus. We find that initial reactivity in the amygdala does not predict trait measures of affective style. Conversely, amygdala recovery shows predictive power such that slower amygdala recovery from negative images predicts greater trait neuroticism, in addition to lower levels of likability of a set of social stimuli (neutral faces). These data underscore the importance of taking into account temporal dynamics when studying affective processing using neuroimaging.
Resumo:
Various complex oscillatory processes are involved in the generation of the motor command. The temporal dynamics of these processes were studied for movement detection from single trial electroencephalogram (EEG). Autocorrelation analysis was performed on the EEG signals to find robust markers of movement detection. The evolution of the autocorrelation function was characterised via the relaxation time of the autocorrelation by exponential curve fitting. It was observed that the decay constant of the exponential curve increased during movement, indicating that the autocorrelation function decays slowly during motor execution. Significant differences were observed between movement and no moment tasks. Additionally, a linear discriminant analysis (LDA) classifier was used to identify movement trials with a peak accuracy of 74%.
Resumo:
The spatial and temporal dynamics in the stream water NO3-N concentrations in a major European river-system, the Garonne (62,700 km(2)), are described and related to variations in climate, land management, and effluent point-sources using multivariate statistics. Building on this, the Hydrologiska Byrans Vattenbalansavdelning (HBV) rainfall-runoff model and the Integrated Catchment Model of Nitrogen (INCA-N) are applied to simulate the observed flow and N dynamics. This is done to help us to understand which factors and processes control the flow and N dynamics in different climate zones and to assess the relative inputs from diffuse and point sources across the catchment. This is the first application of the linked HBV and INCA-N models to a major European river system commensurate with the largest basins to be managed tinder the Water Framework Directive. The simulations suggest that in the lowlands, seasonal patterns in the stream water NO3-N concentrations emerge and are dominated by diffuse agricultural inputs, with an estimated 75% of the river load in the lowlands derived from arable farming. The results confirm earlier European catchment studies. Namely, current semi-distrubuted catchment-scale dynamic models, which integrate variations in land cover, climate, and a simple representation of the terrestrial and in-stream N cycle, are able to simulate seasonal NO3-N patterns at large spatial (> 300 km(2)) and temporal (>= monthly) scales using available national datasets.
Resumo:
The spatial and temporal dynamics in the stream water NO3-N concentrations in a major European river-system, the Garonne (62,700 km(2)), are described and related to variations in climate, land management, and effluent point-sources using multivariate statistics. Building on this, the Hydrologiska Byrans Vattenbalansavdelning (HBV) rainfall-runoff model and the Integrated Catchment Model of Nitrogen (INCA-N) are applied to simulate the observed flow and N dynamics. This is done to help us to understand which factors and processes control the flow and N dynamics in different climate zones and to assess the relative inputs from diffuse and point sources across the catchment. This is the first application of the linked HBV and INCA-N models to a major European river system commensurate with the largest basins to be managed tinder the Water Framework Directive. The simulations suggest that in the lowlands, seasonal patterns in the stream water NO3-N concentrations emerge and are dominated by diffuse agricultural inputs, with an estimated 75% of the river load in the lowlands derived from arable farming. The results confirm earlier European catchment studies. Namely, current semi-distrubuted catchment-scale dynamic models, which integrate variations in land cover, climate, and a simple representation of the terrestrial and in-stream N cycle, are able to simulate seasonal NO3-N patterns at large spatial (> 300 km(2)) and temporal (>= monthly) scales using available national datasets.
Resumo:
A number of tests exist to check for statistical significance of phase synchronisation within the Electroencephalogram (EEG); however, the majority suffer from a lack of generality and applicability. They may also fail to account for temporal dynamics in the phase synchronisation, regarding synchronisation as a constant state instead of a dynamical process. Therefore, a novel test is developed for identifying the statistical significance of phase synchronisation based upon a combination of work characterising temporal dynamics of multivariate time-series and Markov modelling. We show how this method is better able to assess the significance of phase synchronisation than a range of commonly used significance tests. We also show how the method may be applied to identify and classify significantly different phase synchronisation dynamics in both univariate and multivariate datasets.
Resumo:
1. Intra-specific variation in plant defence traits has been shown to profoundly affect herbivore community structure. Here we describe two experiments designed to test whether similar effects occur at higher trophic levels, by studying pea aphid–natural enemy interactions in a disused pasture in southern England. 2. In the first experiment, the numbers and identity of natural enemies attacking different monoclonal pea aphid colonies were recorded in a series of assays throughout the period of pea aphid activity. 3. In the summer assay, there was a significant effect of clone on the numbers of aphidophagous hoverfly larvae and the total number of non-hoverfly natural enemies recruited. Clone also appeared to influence the attack rate suffered by the primary predator in the system, the hoverfly Episyrphus balteatus, by Diplazon laetatorius, an ichneumonid parasitoid. Colonies were generally driven to extinction by hoverfly attack, resulting in the recording of low numbers of parasitoids and entomopathogens, suggesting intense intra-guild predation. 4. To further examine the influence of clonal variation on the recruitment of natural enemies, a second experiment was performed to monitor the temporal dynamics of community development. Colonies were destructively sampled every other day and the numbers of natural enemies attacking aphid colonies were recorded. These data demonstrated that clonal variation influenced the timing, abundance, and identity of natural enemies attacking aphid colonies. 5. Taken together, these data suggest that clonal variation may have a significant influence on the patterns of interactions between aphids and their natural enemies, and that such effects are likely to affect our understanding of the ecology and biological control of these insect herbivores.
Resumo:
When people monitor a visual stream of rapidly presented stimuli for two targets (T1 and T2), they often miss T2 if it falls into a time window of about half a second after T1 onset-the attentional blink (AB). We provide an overview of recent neuroscientific studies devoted to analyze the neural processes underlying the AB and their temporal dynamics. The available evidence points to an attentional network involving temporal, right-parietal and frontal cortex, and suggests that the components of this neural network interact by means of synchronization and stimulus-induced desynchronization in the beta frequency range. We set up a neurocognitive scenario describing how the AB might emerge and why it depends on the presence of masks and the other event(s) the targets are embedded in. The scenario supports the idea that the AB arises from "biased competition", with the top-down bias being generated by parietal-frontal interactions and the competition taking place between stimulus codes in temporal cortex.
Resumo:
1. Reductions in resource availability, associated with land-use change and agricultural intensification in the UK and Europe, have been linked with the widespread decline of many farmland bird species over recent decades. However, the underlying ecological processes which link resource availability and population trends are poorly understood. 2. We construct a spatial depletion model to investigate the relationship between the population persistence of granivorous birds within the agricultural landscape and the temporal dynamics of stubble field availability, an important source of winter food for many of those species. 3. The model is capable of accurately predicting the distribution of a given number of finches and buntings amongst patches of different stubble types in an agricultural landscape over the course of a winter and assessing the relative value of different landscapes in terms of resource availability. 4. Sensitivity analyses showed that the model is relatively robust to estimates of energetic requirements, search efficiency and handling time but that daily seed survival estimates have a strong influence on model fit. Understanding resource dynamics in agricultural landscapes is highlighted as a key area for further research. 5. There was a positive relationship between the predicted number of bird days supported by a landscape over-winter and the breeding population trend for yellowhammer Emberiza citrinella, a species for which survival has been identified as the primary driver of population dynamics, but not for linnet Carduelis cannabina, a species for which productivity has been identified as the primary driver of population dynamics. 6. Synthesis and applications. We believe this model can be used to guide the effective delivery of over-winter food resources under agri-environment schemes and to assess the impacts on granivorous birds of changing resource availability associated with novel changes in land use. This could be very important in the future as farming adapts to an increasingly dynamic trading environment, in which demands for increased agricultural production must be reconciled with objectives for environmental protection, including biodiversity conservation.
Resumo:
1. Species-based indices are frequently employed as surrogates for wider biodiversity health and measures of environmental condition. Species selection is crucial in determining an indicators metric value and hence the validity of the interpretation of ecosystem condition and function it provides, yet an objective process to identify appropriate indicator species is frequently lacking. 2. An effective indicator needs to (i) be representative, reflecting the status of wider biodiversity; (ii) be reactive, acting as early-warning systems for detrimental changes in environmental conditions; (iii) respond to change in a predictable way. We present an objective, niche-based approach for species' selection, founded on a coarse categorisation of species' niche space and key resource requirements, which ensures the resultant indicator has these key attributes. 3. We use UK farmland birds as a case study to demonstrate this approach, identifying an optimal indicator set containing 12 species. In contrast to the 19 species included in the farmland bird index (FBI), a key UK biodiversity indicator that contributes to one of the UK Government's headline indicators of sustainability, the niche space occupied by these species fully encompasses that occupied by the wider community of 62 species. 4. We demonstrate that the response of these 12 species to land-use change is a strong correlate to that of the wider farmland bird community. Furthermore, the temporal dynamics of the index based on their population trends closely matches the population dynamics of the wider community. However, in both analyses, the magnitude of the change in our indicator was significantly greater, allowing this indicator to act as an early-warning system. 5. Ecological indicators are embedded in environmental management, sustainable development and biodiversity conservation policy and practice where they act as metrics against which progress towards national, regional and global targets can be measured. Adopting this niche-based approach for objective selection of indicator species will facilitate the development of sensitive and representative indices for a range of taxonomic groups, habitats and spatial scales.
Resumo:
Objective: Deficits in positive affect and their neural bases have been associated with major depression. However, whether reductions in positive affect result solely from an overall reduction in nucleus accumbens activity and fronto-striatal connectivity or the additional inability to sustain engagement of this network over time is unknown. The authors sought to determine whether treatment-induced changes in the ability to sustain nucleus accumbens activity and fronto-striatal connectivity during the regulation of positive affect are associated with gains in positive affect. Method: Using fMRI, the authors assessed the ability to sustain activity in reward-related networks when attempting to increase positive emotion during per- formance of an emotion regulation para- digm in 21 depressed patients before and after 2 months of antidepressant treat- ment. Over the same interval, 14 healthy comparison subjects underwent scanning as well. Results: After 2 months of treatment, self-reported positive affect increased. The patients who demonstrated the largest increases in sustained nucleus accumbens activity over the 2 months were those who demonstrated the largest increases in positive affect. In addition, the patients who demonstrated the largest increases in sustained fronto-striatal connectivity were also those who demonstrated the largest increases in positive affect when control- ling for negative affect. None of these associations were observed in healthy comparison subjects. Conclusions: Treatment-induced change in the sustained engagement of fronto- striatal circuitry tracks the experience of positive emotion in daily life. Studies examining reduced positive affect in a va- riety of psychiatric disorders might benefit from examining the temporal dynamics of brain activity when attempting to under- stand changes in daily positive affect.
Resumo:
We have developed a model of the local field potential (LFP) based on the conservation of charge, the independence principle of ionic flows and the classical Hodgkin–Huxley (HH) type intracellular model of synaptic activity. Insights were gained through the simulation of the HH intracellular model on the nonlinear relationship between the balance of synaptic conductances and that of post-synaptic currents. The latter is dependent not only on the former, but also on the temporal lag between the excitatory and inhibitory conductances, as well as the strength of the afferent signal. The proposed LFP model provides a method for decomposing the LFP recordings near the soma of layer IV pyramidal neurons in the barrel cortex of anaesthetised rats into two highly correlated components with opposite polarity. The temporal dynamics and the proportional balance of the two components are comparable to the excitatory and inhibitory post-synaptic currents computed from the HH model. This suggests that the two components of the LFP reflect the underlying excitatory and inhibitory post-synaptic currents of the local neural population. We further used the model to decompose a sequence of evoked LFP responses under repetitive electrical stimulation (5 Hz) of the whisker pad. We found that as neural responses adapted, the excitatory and inhibitory components also adapted proportionately, while the temporal lag between the onsets of the two components increased during frequency adaptation. Our results demonstrated that the balance between neural excitation and inhibition can be investigated using extracellular recordings. Extension of the model to incorporate multiple compartments should allow more quantitative interpretations of surface Electroencephalography (EEG) recordings into components reflecting the excitatory, inhibitory and passive ionic current flows generated by local neural populations.
Resumo:
The temporal relationship between changes in cerebral blood flow (CBF) and cerebral blood volume (CBV) is important in the biophysical modeling and interpretation of the hemodynamic response to activation, particularly in the context of magnetic resonance imaging and the blood oxygen level-dependent signal. Grubb et al. (1974) measured the steady state relationship between changes in CBV and CBF after hypercapnic challenge. The relationship CBV proportional to CBFPhi has been used extensively in the literature. Two similar models, the Balloon (Buxton et al., 1998) and the Windkessel (Mandeville et al., 1999), have been proposed to describe the temporal dynamics of changes in CBV with respect to changes in CBF. In this study, a dynamic model extending the Windkessel model by incorporating delayed compliance is presented. The extended model is better able to capture the dynamics of CBV changes after changes in CBF, particularly in the return-to-baseline stages of the response.
Resumo:
Understanding farmer behaviour is needed for local agricultural systems to produce food sustainably while facing multiple pressures. We synthesize existing literature to identify three fundamental questions that correspond to three distinct areas of knowledge necessary to understand farmer behaviour: 1) decision-making model; 2) cross-scale and cross-level pressures; and 3) temporal dynamics. We use this framework to compare five interdisciplinary case studies of agricultural systems in distinct geographical contexts across the globe. We find that these three areas of knowledge are important to understanding farmer behaviour, and can be used to guide the interdisciplinary design and interpretation of studies in the future. Most importantly, we find that these three areas need to be addressed simultaneously in order to understand farmer behaviour. We also identify three methodological challenges hindering this understanding: the suitability of theoretical frameworks, the trade-offs among methods and the limited timeframe of typical research projects. We propose that a triangulation research strategy that makes use of mixed methods, or collaborations between researchers across mixed disciplines, can be used to successfully address all three areas simultaneously and show how this has been achieved in the case studies. The framework facilitates interdisciplinary research on farmer behaviour by opening up spaces of structured dialogue on assumptions, research questions and methods employed in investigation.
Resumo:
Movement intention detection is important for development of intuitive movement based Brain Computer Interfaces (BCI). Various complex oscillatory processes are involved in producing voluntary movement intention. In this paper, temporal dynamics of electroencephalography (EEG) associated with movement intention and execution were studied using autocorrelation. It was observed that the trend of decay of autocorrelation of EEG changes before and during the voluntary movement. A novel feature for movement intention detection was developed based on relaxation time of autocorrelation obtained by fitting exponential decay curve to the autocorrelation. This new single trial feature was used to classify voluntary finger tapping trials from resting state trials with peak accuracy of 76.7%. The performance of autocorrelation analysis was compared with Motor-Related Cortical Potentials (MRCP).
Resumo:
Background: Variation in carrying capacity and population return rates is generally ignored in traditional studies of population dynamics. Variation is hard to study in the field because of difficulties controlling the environment in order to obtain statistical replicates, and because of the scale and expense of experimenting on populations. There may also be ethical issues. To circumvent these problems we used detailed simulations of the simultaneous behaviours of interacting animals in an accurate facsimile of a real Danish landscape. The models incorporate as much as possible of the behaviour and ecology of skylarks Alauda arvensis, voles Microtus agrestis, a ground beetle Bembidion lampros and a linyphiid spider Erigone atra. This allows us to quantify and evaluate the importance of spatial and temporal heterogeneity on the population dynamics of the four species. Results: Both spatial and temporal heterogeneity affected the relationship between population growth rate and population density in all four species. Spatial heterogeneity accounted for 23–30% of the variance in population growth rate after accounting for the effects of density, reflecting big differences in local carrying capacity associated with the landscape features important to individual species. Temporal heterogeneity accounted for 3–13% of the variance in vole, skylark and spider, but 43% in beetles. The associated temporal variation in carrying capacity would be problematic in traditional analyses of density dependence. Return rates were less than one in all species and essentially invariant in skylarks, spiders and beetles. Return rates varied over the landscape in voles, being slower where there were larger fluctuations in local population sizes. Conclusion: Our analyses estimated the traditional parameters of carrying capacities and return rates, but these are now seen as varying continuously over the landscape depending on habitat quality and the mechanisms of density dependence. The importance of our results lies in our demonstration that the effects of spatial and temporal heterogeneity must be accounted for if we are to have accurate predictive models for use in management and conservation. This is an area which until now has lacked an adequate theoretical framework and methodology.