27 resultados para Stress degradation studies
Resumo:
Epigenetic regulations play important roles in plant development and adaptation to environmental stress. Recent studies from mammalian systems have demonstrated the involvement of ten-eleven translocation (Tet) family of dioxygenases in the generation of a series of oxidized derivatives of 5-methylcytosine (5-mC) in mammalian DNA. In addition, these oxidized 5-mC nucleobases have important roles in epigenetic remodeling and aberrant levels of 5-hydroxymethyl-29-deoxycytidine (5-HmdC) were found to be associated with different types of human cancers. However, there is a lack of evidence supporting the presence of these modified bases in plant DNA. Here we reported the use of a reversed-phase HPLC coupled with tandem mass spectrometry method and stable isotope-labeled standards for assessing the levels of the oxidized 5-mC nucleosides along with two other oxidatively induced DNA modifications in genomic DNA of Arabidopsis. These included 5- HmdC, 5-formyl-29-deoxycytidine (5-FodC), 5-carboxyl-29-deoxycytidine (5-CadC), 5-hydroxymethyl-29-deoxyuridine (5- HmdU), and the (59S) diastereomer of 8,59-cyclo-29-deoxyguanosine (S-cdG). We found that, in Arabidopsis DNA, the levels of 5-HmdC, 5-FodC, and 5-CadC are approximately 0.8 modifications per 106 nucleosides, with the frequency of 5-HmdC (per 5-mdC) being comparable to that of 5-HmdU (per thymidine). The relatively low levels of the 5-mdC oxidation products suggest that they arise likely from reactive oxygen species present in cells, which is in line with the lack of homologous Tetfamily dioxygenase enzymes in Arabidopsis.
Resumo:
It is becoming apparent that anti-cancer chemotherapies are increasingly associated with cardiac dysfunction or even congestive heart failure (Minotti et al., 2004; Eliott, 2006; Suter et al., 2004; Ren, 2005). Our data suggest that one of the contributing factors to the cardiotoxicitiy of these drugs may be the activation of the AhR-response (including the increased expression of Cyp1a1) and/or other detoxification program in cardiac myocytes themselves. The induction of such responses may have secondary effects (e.g. to increase the level of intracellular oxidative stress), which may influence the contractility or even survival of cardiac myocytes. Furthermore, the specific response of cardiac myocytes, both with respect to the metabolizing enzymes and the export channels, potentially differs from other cells (e.g. we failed to detect any increase in expression of other “classical” AhR-responsive genes, Ugt1a1 and Ugt1a6). This could account for, for example, the observation that doxoribicinol (the 13-hydroxy form of doxorubicin) accumulates in cardiac myocytes but not in hepatocytes (Del Tacca et al., 1985; Olson et al., 1988). Given the vulnerability of the heart and the almost irreparable damage that can be done by severe oxidative stress, further studies would seem to be merited specifically on the effects of chemotherapeutic agents on cardiac myocytes.
Resumo:
The night-time tropospheric chemistry of two stress-induced volatile organic compounds (VOCs), (Z)-pent-2-en-1-ol and pent-1-en-3-ol, has been studied at room temperature. Rate coefficients for reactions of the nitrate radical (NO3) with these pentenols were measured using the discharge-flow technique. Because of the relatively low volatility of these compounds, we employed off-axis continuous-wave cavity-enhanced absorption spectroscopy for detection of NO3 in order to be able to work in pseudo first-order conditions with the pentenols in large excess over NO3. The rate coefficients were determined to be (1.53 +/- 0.23) x 10(-13) and (1.39 +/- 0.19) x 10(-14) cm(3) molecule(-1) s(-1) for reactions of NO3 with (Z)-pent-2-en-1-ol and pent-1-en-3-ol. An attempt to study the kinetics of these reactions with a relative-rate technique, using N2O5 as source of NO3 resulted in significantly higher apparent rate coefficients. Performing relative-rate experiments in known excesses of NO2 allowed us to determine the rate coefficients for the N2O5 reactions to be (5.0 +/- 2.8) x 10(-19) cm(3) molecule(-1) s(-1) for (Z)-pent-2-en-1-ol, and (9.1 +/- 5.8) x 10(-19) cm(3) molecule(-1) s(-1) for pent-1-en-3-ol. We show that these relatively slow reactions can indeed interfere with rate determinations in conventional relative-rate experiments.
Resumo:
Germin is a homopentameric glycoprotein, the synthesis of which coincides with the onset of growth in germinating wheat embryos. There have been detailed studies of germin structure, biosynthesis, homology with other proteins, and of its value as a marker of wheat development. Germin isoforms associated with the apoplast have been speculated to have a role in embryo hydration during maturation and germination. Antigenically related isoforms of germin are present during germination in all of the economically important cereals studied, and the amounts of germin-like proteins and coding elements have been found to undergo conspicuous change when salt-tolerant higher plants are subjected to salt stress. In this report, we describe how circumstantial evidence arising from unrelated studies of barley oxalate oxidase and its coding elements have led to definitive evidence that the germin isoform made during wheat germination is an oxalate oxidase. Establishment of links between oxalate degradation, cereal germination, and salt tolerance has significant implications for a broad range of studies related to development and adaptation in higher plants. Roles for germin in cell wall biochemistry and tissue remodeling are discussed, with special emphasis on the generation of hydrogen peroxide during germin-induced oxidation of oxalate.
Resumo:
Brief periods of high temperature which occur near flowering can severely reduce the yield of annual crops such as wheat and groundnut. A parameterisation of this well-documented effect is presented for groundnut (i.e. peanut; Arachis hypogaeaL.). This parameterisation was combined with an existing crop model, allowing the impact of season-mean temperature, and of brief high-temperature episodes at various times near flowering, to be both independently and jointly examined. The extended crop model was tested with independent data from controlled environment experiments and field experiments. The impact of total crop duration was captured, with simulated duration being within 5% of observations for the range of season-mean temperatures used (20-28 degrees C). In simulations across nine differently timed high temperature events, eight of the absolute differences between observed and simulated yield were less than 10% of the control (no-stress) yield. The parameterisation of high temperature stress also allows the simulation of heat tolerance across different genotypes. Three parameter sets, representing tolerant, moderately sensitive and sensitive genotypes were developed and assessed. The new parameterisation can be used in climate change studies to estimate the impact of heat stress on yield. It can also be used to assess the potential for adaptation of cropping systems to increased temperature threshold exceedance via the choice of genotype characteristics. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The stress relaxation behaviour of two frozen sucrose solutions (7% and 19%) during indentation in the temperature range of -20C to -40C were investigated. The stress relaxation is similar to that of pure polycrystalline ice, which is controlled by steady-state creep. The steady state creep rate exponent, m, of 7% and 19% sucrose solutions lies between 2.3 and 3.6. The steady state creep rate constant, B, of 19% sucrose solution is greater than that of 7% sucrose solution. It is suggested that the steady-state creep rate exponent m depends on contributions from the proportions of favourably oriented grains, unfavourably oriented grains and grain boundaries to creep and that these components depend on the value of internal stress which is related to the hardness of samples at the different testing temperatures. The steady-state creep rate constant B depends on the mobility of dislocations in sucrose solutions which, in turn, depends on the temperature and the concentration of sucrose.
Resumo:
The role of ribosome modulation factor (RMF) in protecting heat-stressed Escherichia coli cells was identified by the observation that cultures of a mutant strain lacking functional RMF (HMY15) were highly heat sensitive in stationary phase compared to those of the parent strain (W3110). No difference in heat sensitivity was observed between these strains in exponential phase, during which RMF is not synthesised. Studies by differential scanning calorimetry demonstrated that the ribosomes of stationary-phase cultures of the mutant strain had lower thermal stability than those of the parent strain in stationary phase, or exponential-phase ribosomes. More rapid breakdown of ribosomes in the mutant strain during heating was confirmed by rRNA analysis and sucrose density gradient centrifugation. Analyses of ribosome composition showed that the 100S dimers dissociated more rapidly during heating than 70S particles. While ribosome dimerisation is a consequence of the conformational changes caused by RMF binding, it may not therefore be essential for RMF-mediated ribosome stabilisation.
Resumo:
Objective: To determine whether dietary supplementation with a natural carotenoid mixture counteracts the enhancement of oxidative stress induced by consumption of fish oil. Design: A randomised double-blind crossover dietary intervention. Setting: Hugh Sinclair Unit of Human Nutrition, School of Food Biosciences, The University of Reading, Whiteknights PO Box 226, Reading RG6 6AP, UK. Subjects and intervention: A total of 32 free-living healthy nonsmoking volunteers were recruited by posters and e-mails in The University of Reading. One volunteer withdrew during the study. The volunteers consumed a daily supplement comprising capsules containing fish oil (4 x 1 g) or fish oil (4 x 1 g) containing a natural carotenoid mixture (4 x 7.6 mg) for 3 weeks in a randomised crossover design separated by a 12 week washout phase. The carotenoid mixture provided a daily intake of beta-carotene (6.0 mg), alpha-carotene (1.4 mg), lycopene (4.5 mg), bixin (11.7 mg), lutein (4.4 mg) and paprika carotenoids (2.2 mg). Blood and urine samples were collected on days 0 and 21 of each dietary period. Results: The carotenoid mixture reduced the fall in ex vivo oxidative stability of low-density lipoprotein (LDL) induced by the fish oil (P = 0.045) and it reduced the extent of DNA damage assessed by the concentration of 8-hydroxy-2'-deoxyguanosine in urine (P = 0.005). There was no effect on the oxidative stability of plasma ex vivo assessed by the oxygen radical absorbance capacity test. beta- Carotene, alpha-carotene, lycopene and lutein were increased in the plasma of subjects consuming the carotenoid mixture. Plasma triglyceride levels were reduced significantly more than the reduction for the fish oil control (P = 0.035), but total cholesterol, HDL and LDL levels were not significantly changed by the consumption of the carotenoid mixture. Conclusions: Consumption of the natural carotenoid mixture lowered the increase in oxidative stress induced by the fish oil as assessed by ex vivo oxidative stability of LDL and DNA degradation product in urine. The carotenoid mixture also enhanced the plasma triglyceride-lowering effect of the fish oil.
Resumo:
Although in developing countries an apolipoprotein E4 (apoE4) genotype may offer an evolutionary advantage, as it has been shown to offer protection against certain infectious disease, in Westernised societies it is associated with increased morbidity and mortality, and represents a significant risk factor for cardiovascular disease, late-onset Alzheimer's disease and other chronic disorders. ApoE is an important modulator of many stages of lipoprotein metabolism and traditionally the increased risk was attributed to higher lipid levels in E4 carriers. However, more recent evidence demonstrates the multifunctional nature of the apoE protein and the fact that the impact of genotype on disease risk may be in large part due to an impact on oxidative status or the immunomodulatory/anti-inflammatory properties of apoE. An increasing number of studies in cell lines, targeted replacement rodents and human volunteers indicate higher oxidative stress and a more pro-inflammatory state associated with the F,4 allele. The impact of genotype on the antioxidant and immunomodulatory/anti-inflammatory properties of apoE is the focus of the current review. Furthermore, current information on the impact of environment (diet, exercise, smoking status, alcohol) on apoE genotype-phenotype associations are discussed with a view to identifying particular lifestyle strategies that could be adapted to counteract the 'at-risk' E4 genotype.
Resumo:
Ribosome modulation factor (RMF) was shown to have an influence on the survival of Escherichia coli under acid stress during stationary phase, since the viability of cultures of a mutant strain lacking functional RMF decreased more rapidly than that of the parent strain at pH 3. Loss of ribosomes was observed in both strains when exposed to low pH, although this occurred at a higher rate in the RMF-deficient mutant strain, which also suffered from higher levels of rRNA degradation. It was concluded that the action of RMF in limiting the damage to rRNA contributed to the protection of E coli under acid stress. Expression of the rmf gene was lower during stationary phase after growth in acidified media compared to media containing no added acid, and the increased rmf expression associated with transition from exponential phase to stationary phase was much reduced in acidified media. It was demonstrated that RMF was not involved in the stationary-phase acid-tolerance response in E coli by which growth under acidic conditions confers protection against subsequent acid shock. This response was sufficient to overcome the increased vulnerability of the RMF-deficient mutant strain to acid stress at pH values between 6.5 and 5.5.
Resumo:
Two studies of assault victims examined the roles of (a) disorganized trauma memories in the development of posttraumatic stress disorder (PTSD), (b) peritraumatic cognitive processing in the development of problematic memories and PTSD, and (c) ongoing dissociation and negative appraisals of memories in maintaining symptomatology. In the cross-sectional study (n = 81), comparisons of current, past, and no-PTSD groups suggested that peritraumatic cognitive processing is related to the development of disorganized memories and PTSD. Ongoing dissociation and negative appraisals served to maintain PTSD symptoms. The prospective study (n = 73) replicated these findings longitudinally. Cognitive and memory assessments completed within 12-weeks postassault predicted 6-month symptoms. Assault severity measures explained 22% of symptom variance; measures of cognitive processing, memory disorganization, and appraisals increased prediction accuracy to 71%.
Resumo:
Rate coefficients for reactions of nitrate radicals (NO3) with the anthropogenic emissions 2-methylpent-2-ene, (Z)-3-methylpent-2-ene.. ethyl vinyl ether, and the stress-induced plant emission ethyl vinyl ketone (pent-1-en-3-one) were determined to be (9.3 +/- 1.1) x 10(-12), (9.3 +/- 3.2) x 10(-12), (1.7 +/- 1.3) x 10(-12) and (9.4 + 2.7) x 10(-17) cm(3) molecule(-1) s(-1). We performed kinetic experiments at room temperature and atmospheric pressure using a relative-rate technique with GC-FID analysis. Experiments with ethyl vinyl ether required a modification of our established procedure that might introduce additional uncertainties, and the errors suggested reflect these difficulties. Rate coefficients are discussed in terms of electronic and steric influences. Atmospheric lifetimes with respect to important oxidants in the troposphere were calculated. NO3-initiated oxidation is found to be the strongly dominating degradation route for 2-methylpent-2-ene, (Z)-3-methylpent-2-ene and ethyl vinyl ether. Atmospheric concentrations of the alkenes and their relative contribution to the total NMHC emissions from trucks can be expected to increase if plans for the introduction of particle filters for diesel engines are implemented on a global scale. Thus more kinetic data are required to better evaluate the impact of these emissions.
Resumo:
The night-time atmospheric chemistry of the biogenic volatile organic compounds (Z)-hex-4-en-1-ol, (Z)-hex-3-en-1-ol ('leaf alcohol'), (E)-hex-3-en-1-ol, (Z)-hex-2-en-1-ol and (E)-hex-2-en-1-ol, has been studied at room temperature. Rate coefficients for reactions of the nitrate radical (NO3) with these stress-induced plant emissions were measured using the discharge-flow technique. We employed off-axis continuous-wave cavity-enhanced absorption spectroscopy (CEAS) for the detection of NO3, which enabled us to work in excess of the hexenol compounds over NO3. The rate coefficients determined were (2.93 +/- 0.58) x 10(-13) cm(3) molecule(-1) s(-1), (2.67 +/- 0.42) x 10(-13) cm(3) molecule(-1) s(-1), (4.43 +/- 0.91) x 10(-13) cm(3) molecule(-1) s(-1), (1.56 +/- 0.24) x 10(-13) cm(3) molecule(-1) s(-1), and (1.30 +/- 0.24) x 10(-13) cm(3) molecule(-1) s(-1) for (Z)-hex-4-en-1-ol, (Z)-hex-3en-1-ol, (E)-hex-3-en-1-ol, (Z)-hex-2-en-1-ol and (E)-hex-2-en-1-ol. The rate coefficient for the reaction of NO3 with (Z)-hex-3-en-1-ol agrees with the single published determination of the rate coefficient using a relative method. The other rate coefficients have not been measured before and are compared to estimated values. Relative-rate studies were also performed, but required modification of the standard technique because N2O5 (used as the source of NO3) itself reacts with the hexenols. We used varying excesses of NO2 to determine simultaneously rate coefficients for reactions of NO3 and N2O5 with (E)-hex-3-en-1-ol of (5.2 +/- 1.8) x 10(-13) cm(3) molecule(-1) s(-1) and (3.1 +/- 2.3) x 10(-18) cm(3) molecule(-1) s(-1). Our new determinations suggest atmospheric lifetimes with respect to NO3-initiated oxidation of roughly 1-4 h for the hexenols, comparable with lifetimes estimated for the atmospheric degradation by OH and shorter lifetimes than for attack by O-3. Recent measurements of [N2O5] suggest that the gas-phase reactions of N2O5 with unsaturated alcohols will not be of importance under usual atmospheric conditions, but they certainly can be in laboratory systems when determining rate coefficients.
Resumo:
Krüppel-like transcription factors (Klfs) modulate fundamental cell processes. Cardiac myocytes are terminally-differentiated, but hypertrophy in response to stimuli such as endothelin-1. H2O2 or cytokines promote myocyte apoptosis. Microarray studies of neonatal rat myocytes identified several Klfs as endothelin-1-responsive genes. We used quantitative PCR for further analysis of Klf expression in neonatal rat myocytes. In response to endothelin-1, Klf2 mRNA expression was rapidly increased ( approximately 9-fold; 15-30 min) with later increases in expression of Klf4 and Klf6 ( approximately 5-fold; 30-60 min). All were regulated as immediate early genes (cycloheximide did not inhibit the increases in expression). Klf5 expression was increased at 1-2 h ( approximately 13-fold) as a second phase response (cycloheximide inhibited the increase). These increases were transient and attenuated by U0126. H2O2 increased expression of Klf2, Klf4 and Klf6, but interleukin-1beta or tumor necrosis factor alpha downregulated Klf2 expression with no effect on Klf4 or Klf6. Of the Klfs which repress transcription, endothelin-1 rapidly downregulated expression of Klf3, Klf11 and Klf15. The dynamic regulation of expression of multiple Klf family members in cardiac myocytes suggests that, as a family, they are actively involved in regulating phenotypic responses (hypertrophy and apoptosis) to extracellular stimuli.