32 resultados para Stadtbibliothek <Hamburg>Stadtbibliothek <Hamburg>
Resumo:
The long-term stability, high accuracy, all-weather capability, high vertical resolution, and global coverage of Global Navigation Satellite System (GNSS) radio occultation (RO) suggests it as a promising tool for global monitoring of atmospheric temperature change. With the aim to investigate and quantify how well a GNSS RO observing system is able to detect climate trends, we are currently performing an (climate) observing system simulation experiment over the 25-year period 2001 to 2025, which involves quasi-realistic modeling of the neutral atmosphere and the ionosphere. We carried out two climate simulations with the general circulation model MAECHAM5 (Middle Atmosphere European Centre/Hamburg Model Version 5) of the MPI-M Hamburg, covering the period 2001–2025: One control run with natural variability only and one run also including anthropogenic forcings due to greenhouse gases, sulfate aerosols, and tropospheric ozone. On the basis of this, we perform quasi-realistic simulations of RO observables for a small GNSS receiver constellation (six satellites), state-of-the-art data processing for atmospheric profiles retrieval, and a statistical analysis of temperature trends in both the “observed” climatology and the “true” climatology. Here we describe the setup of the experiment and results from a test bed study conducted to obtain a basic set of realistic estimates of observational errors (instrument- and retrieval processing-related errors) and sampling errors (due to spatial-temporal undersampling). The test bed results, obtained for a typical summer season and compared to the climatic 2001–2025 trends from the MAECHAM5 simulation including anthropogenic forcing, were found encouraging for performing the full 25-year experiment. They indicated that observational and sampling errors (both contributing about 0.2 K) are consistent with recent estimates of these errors from real RO data and that they should be sufficiently small for monitoring expected temperature trends in the global atmosphere over the next 10 to 20 years in most regions of the upper troposphere and lower stratosphere (UTLS). Inspection of the MAECHAM5 trends in different RO-accessible atmospheric parameters (microwave refractivity and pressure/geopotential height in addition to temperature) indicates complementary climate change sensitivity in different regions of the UTLS so that optimized climate monitoring shall combine information from all climatic key variables retrievable from GNSS RO data.
Intercomparison of water and energy budgets simulated by regional climate models applied over Europe
Resumo:
Observed global ocean heat content anomalies over the past five decades agree well with an anthropogenically forced simulation using the European Center/Hamburg coupled general circulation model (GCM) ECHAM4/OPYC3 considering increasing greenhouse gas concentrations, the direct and indirect effect of sulphate aerosols, and anthropogenic changes in tropospheric ozone. An optimal detection and attribution analysis confirms that the simulated climate change signal can be detected in the observations in both the upper 300 m and 3000 m of the water column and that the observed changes in ocean heat content are consistent with those expected from the anthropogenically forced GCM integration. This suggests that anthropogenic forcing is a likely explanation for the observed global ocean warming over the past five decades.
Resumo:
Ensembles of extended Atmospheric Model Intercomparison Project (AMIP) runs from the general circulation models of the National Centers for Environmental Prediction (formerly the National Meteorological Center) and the Max-Planck Institute (Hamburg, Germany) are used to estimate the potential predictability (PP) of an index of the Pacific–North America (PNA) mode of climate change. The PP of this pattern in “perfect” prediction experiments is 20%–25% of the index’s variance. The models, particularly that from MPI, capture virtually all of this variance in their hindcasts of the winter PNA for the period 1970–93. The high levels of internally generated model noise in the PNA simulations reconfirm the need for an ensemble averaging approach to climate prediction. This means that the forecasts ought to be expressed in a probabilistic manner. It is shown that the models’ skills are higher by about 50% during strong SST events in the tropical Pacific, so the probabilistic forecasts need to be conditional on the tropical SST. Taken together with earlier studies, the present results suggest that the original set of AMIP integrations (single 10-yr runs) is not adequate to reliably test the participating models’ simulations of interannual climate variability in the midlatitudes.
Resumo:
The recent global tropospheric temperature trend can be reproduced by climate models that are forced only by observed sea surface temperature (SST) anomalies. In this study, simulations with the Hamburg climate model (ECHAM) are compared to temperatures from microwave sounding units (MSU) and to reanalyses from the European Centre for Medium-Range Weather Forecasts. There is overall agreement of observed and simulated tropospheric temperature anomalies in many regions, in particular in the tropics and over the oceans, which lack conventional observing systems. This provides the opportunity to link physically different quantities, such as surface observations or analyses (SST) and satellite soundings (MSU) by means of a general circulation model. The proposed method can indicate inconsistencies between MSU temperatures and SSTs and has apparently done so. Differences between observed and simulated tropospheric temperature anomalies can partly be attributed to stratospheric aerosol variations due to major volcanic eruptions.
Resumo:
A simple four-dimensional assimilation technique, called Newtonian relaxation, has been applied to the Hamburg climate model (ECHAM), to enable comparison of model output with observations for short periods of time. The prognostic model variables vorticity, divergence, temperature, and surface pressure have been relaxed toward European Center for Medium-Range Weather Forecasts (ECMWF) global meteorological analyses. Several experiments have been carried out, in which the values of the relaxation coefficients have been varied to find out which values are most usable for our purpose. To be able to use the method for validation of model physics or chemistry, good agreement of the model simulated mass and wind field is required. In addition, the model physics should not be disturbed too strongly by the relaxation forcing itself. Both aspects have been investigated. Good agreement with basic observed quantities, like wind, temperature, and pressure is obtained for most simulations in the extratropics. Derived variables, like precipitation and evaporation, have been compared with ECMWF forecasts and observations. Agreement for these variables is smaller than for the basic observed quantities. Nevertheless, considerable improvement is obtained relative to a control run without assimilation. Differences between tropics and extratropics are smaller than for the basic observed quantities. Results also show that precipitation and evaporation are affected by a sort of continuous spin-up which is introduced by the relaxation: the bias (ECMWF-ECHAM) is increasing with increasing relaxation forcing. In agreement with this result we found that with increasing relaxation forcing the vertical exchange of tracers by turbulent boundary layer mixing and, in a lesser extent, by convection, is reduced.
Resumo:
The climate and natural variability of the large-scale stratospheric circulation simulated by a newly developed general circulation model are evaluated against available global observations. The simulation consisted of a 30-year annual cycle integration performed with a comprehensive model of the troposphere and stratosphere. The observations consisted of a 15-year dataset from global operational analyses of the troposphere and stratosphere. The model evaluation concentrates on the simulation of the evolution of the extratropical stratospheric circulation in both hemispheres. The December–February climatology of the observed zonal mean winter circulation is found to be reasonably well captured by the model, although in the Northern Hemisphere upper stratosphere the simulated westerly winds are systematically stronger and a cold bias is apparent in the polar stratosphere. This Northern Hemisphere stratospheric cold bias virtually disappears during spring (March–May), consistent with a realistic simulation of the spring weakening of the mean westerly winds in the model. A considerable amount of monthly interannual variability is also found in the simulation in the Northern Hemisphere in late winter and early spring. The simulated interannual variability is predominantly caused by polar warmings of the stratosphere, in agreement with observations. The breakdown of the Northern Hemisphere stratospheric polar vortex appears therefore to occur in a realistic way in the model. However, in early winter the model severely underestimates the interannual variability, especially in the upper troposphere. The Southern Hemisphere winter (June–August) zonal mean temperature is systematically colder in the model, and the simulated winds are somewhat too strong in the upper stratosphere. Contrary to the results for the Northern Hemisphere spring, this model cold bias worsens during the Southern Hemisphere spring (September–November). Significant discrepancies between the model results and the observations are therefore found during the breakdown of the Southern Hemisphere polar vortex. For instance, the simulated Southern Hemisphere stratosphere westerly jet continuously decreases in intensity more or less in situ from June to November, while the observed stratospheric jet moves downward and poleward.
Resumo:
ECHO is a new global coupled ocean-atmosphere general circulation model (GCM), consisting of the Hamburg version of the European Centre atmospheric GCM (ECHAM) and the Hamburg Primitive Equation ocean GCM (HOPE). We performed a 20-year integration with ECHO. Climate drift is significant, but typical annual mean errors in sea surface temperature (SST) do not exceed 2° in the open oceans. Near the boundaries, however, SST errors are considerably larger. The coupled model simulates an irregular ENSO cycle in the tropical Pacific, with spatial patterns similar to those observed. The variability, however, is somewhat weaker relative to observations. ECHO also simulates significant interannual variability in mid-latitudes. Consistent with observations, variability over the North Pacific can be partly attributed to remote forcing from the tropics. In contrast, the interannual variability over the North Atlantic appears to be generated locally.
Resumo:
In this study, we investigated the impact of global warming on the variabilities of large-scale interannual and interdecadal climate modes and teleconnection patterns with two long-term integrations of the coupled general circulation model of ECHAM4/OPYC3 at the Max-Planck-Institute for Meteorology, Hamburg. One is the control (CTRL) run with fixed present-day concentrations of greenhouse gases. The other experiment is a simulation of transient greenhouse warming, named GHG run. In the GHG run the averaged geopotential height at 500 hPa is increased significantly, and a negative phase of the Pacific/North American (PNA) teleconnection-like distribution pattern is intensified. The standard deviation over the tropics (high latitudes) is enhanced (reduced) on the interdecadal time scales and reduced (enhanced) on the interannual time scales in the GHG run. Except for an interdecadal mode related to the Southern Oscillation (SO) in the GHG run, the spatial variation patterns are similar for different (interannual + interdecadal, interannual, and interdecadal) time scales in the GHG and CTRL runs. Spatial distributions of the teleconnection patterns on the interannual and interdecadal time scales in the GHG run are also similar to those in the CTRL run. But some teleconnection patterns show linear trends and changes of variances and frequencies in the GHG run. Apart from the positive linear trend of the SO, the interdecadal modulation to the El Niño/SO cycle is enhanced during the GHG 2040 ∼ 2099. This is the result of an enhancement of the Walker circulation during that period. La Niña events intensify and El Niño events relatively weaken during the GHG 2070 ∼ 2090. It is interesting to note that with increasing greenhouse gas concentrations the relation between the SO and the PNA pattern is reversed significantly from a negative to a positive correlation on the interdecadal time scales and weakened on the interannual time scales. This suggests that the increase of the greenhouse gas concentrations will trigger the nonstationary correlation between the SO and the PNA pattern both on the interdecadal and interannual time scales.