57 resultados para Spatially explicit model
Resumo:
Models of windblown pollen or spore movement are required to predict gene flow from genetically modified (GM) crops and the spread of fungal diseases. We suggest a simple form for a function describing the distance moved by a pollen grain or fungal spore, for use in generic models of dispersal. The function has power-law behaviour over sub-continental distances. We show that air-borne dispersal of rapeseed pollen in two experiments was inconsistent with an exponential model, but was fitted by power-law models, implying a large contribution from distant fields to the catches observed. After allowance for this 'background' by applying Fourier transforms to deconvolve the mixture of distant and local sources, the data were best fit by power-laws with exponents between 1.5 and 2. We also demonstrate that for a simple model of area sources, the median dispersal distance is a function of field radius and that measurement from the source edge can be misleading. Using an inverse-square dispersal distribution deduced from the experimental data and the distribution of rapeseed fields deduced by remote sensing, we successfully predict observed rapeseed pollen density in the city centres of Derby and Leicester (UK).
Resumo:
This paper presents an integrative and spatially explicit modeling approach for analyzing human and environmental exposure from pesticide application of smallholders in the potato producing Andean region in Colombia. The modeling approach fulfills the following criteria: (i) it includes environmental and human compartments; (ii) it contains a behavioral decision-making model for estimating the effect of policies on pesticide flows to humans and the environment; (iii) it is spatially explicit; and (iv) it is modular and easily expandable to include additional modules, crops or technologies. The model was calibrated and validated for the Vereda La Hoya and was used to explore the effect of different policy measures in the region. The model has moderate data requirements and can be adapted relatively easy to other regions in developing countries with similar conditions.
Resumo:
The extent to which past climate change has dictated the pattern and timing of the out-of-Africa expansion by anatomically modern humans is currently unclear [Stewart JR, Stringer CB (2012) Science 335:1317–1321]. In particular, the incompleteness of the fossil record makes it difficult to quantify the effect of climate. Here, we take a different approach to this problem; rather than relying on the appearance of fossils or archaeological evidence to determine arrival times in different parts of the world, we use patterns of genetic variation in modern human populations to determine the plausibility of past demographic parameters. We develop a spatially explicit model of the expansion of anatomically modern humans and use climate reconstructions over the past 120 ky based on the Hadley Centre global climate model HadCM3 to quantify the possible effects of climate on human demography. The combinations of demographic parameters compatible with the current genetic makeup of worldwide populations indicate a clear effect of climate on past population densities. Our estimates of this effect, based on population genetics, capture the observed relationship between current climate and population density in modern hunter–gatherers worldwide, providing supporting evidence for the realism of our approach. Furthermore, although we did not use any archaeological and anthropological data to inform the model, the arrival times in different continents predicted by our model are also broadly consistent with the fossil and archaeological records. Our framework provides the most accurate spatiotemporal reconstruction of human demographic history available at present and will allow for a greater integration of genetic and archaeological evidence.
Resumo:
1. There is concern over the possibility of unwanted environmental change following transgene movement from genetically modified (GM) rapeseed Brassica napus to its wild and weedy relatives. 2. The aim of this research was to develop a remote sensing-assisted methodology to help quantify gene flow from crops to their wild relatives over wide areas. Emphasis was placed on locating sites of sympatry, where the frequency of gene flow is likely to be highest, and on measuring the size of rapeseed fields to allow spatially explicit modelling of wind-mediated pollen-dispersal patterns. 3. Remote sensing was used as a tool to locate rapeseed fields, and a variety of image-processing techniques was adopted to facilitate the compilation of a spatially explicit profile of sympatry between the crop and Brassica rapa. 4. Classified satellite images containing rapeseed fields were first used to infer the spatial relationship between donor rapeseed fields and recipient riverside B. rapa populations. Such images also have utility for improving the efficiency of ground surveys by identifying probable sites of sympatry. The same data were then also used for the calculation of mean field size. 5. This paper forms a companion paper to Wilkinson et al. (2003), in which these elements were combined to produce a spatially explicit profile of hybrid formation over the UK. The current paper demonstrates the value of remote sensing and image processing for large-scale studies of gene flow, and describes a generic method that could be applied to a variety of crops in many countries. 6. Synthesis and applications. The decision to approve or prevent the release of a GM cultivar is made at a national rather than regional level. It is highly desirable that data relating to the decision-making process are collected at the same scale, rather than relying on extrapolation from smaller experiments designed at the plot, field or even regional scale. It would be extremely difficult and labour intensive to attempt to carry out such large-scale investigations without the use of remote-sensing technology. This study used rapeseed in the UK as a model to demonstrate the value of remote sensing in assembling empirical information at a national level.
Resumo:
1.There is concern over the possibility of unwanted environmental change following transgene movement from genetically modified (GM) rapeseed Brassica napus to its wild and weedy relatives. 2. The aim of this research was to develop a remote sensing-assisted methodology to help quantify gene flow from crops to their wild relatives over wide areas. Emphasis was placed on locating sites of sympatry, where the frequency of gene flow is likely to be highest, and on measuring the size of rapeseed fields to allow spatially explicit modelling of wind-mediated pollen-dispersal patterns. 3. Remote sensing was used as a tool to locate rapeseed fields, and a variety of image-processing techniques was adopted to facilitate the compilation of a spatially explicit profile of sympatry between the crop and Brassica rapa. 4. Classified satellite images containing rapeseed fields were first used to infer the spatial relationship between donor rapeseed fields and recipient riverside B. rapa populations. Such images also have utility for improving the efficiency of ground surveys by identifying probable sites of sympatry. The same data were then also used for the calculation of mean field size. 5. This paper forms a companion paper to Wilkinson et al. (2003), in which these elements were combined to produce a spatially explicit profile of hybrid formation over the UK. The current paper demonstrates the value of remote sensing and image processing for large-scale studies of gene flow, and describes a generic method that could be applied to a variety of crops in many countries. 6.Synthesis and applications. The decision to approve or prevent the release of a GM cultivar is made at a national rather than regional level. It is highly desirable that data relating to the decision-making process are collected at the same scale, rather than relying on extrapolation from smaller experiments designed at the plot, field or even regional scale. It would be extremely difficult and labour intensive to attempt to carry out such large-scale investigations without the use of remote-sensing technology. This study used rapeseed in the UK as a model to demonstrate the value of remote sensing in assembling empirical information at a national level.
Resumo:
Currently we have little understanding of the impacts of land use change on soil C stocks in the Brazilian Amazon. Such information is needed to determine impacts'6n the global C cycle and the sustainability of agricultural systems that are replacing native forest. The aim of this study was to predict soil carbon stocks and changes in the Brazilian Amazon during the period between 2000 and 2030, using the GEFSOC soil carbon (C) modelling system. In order to do so, we devised current and future land use scenarios for the Brazilian Amazon, taking into account: (i) deforestation, rates from the past three decades, (ii) census data on land use from 1940 to 2000, including the expansion and intensification of agriculture in the region, (iii) available information on management practices, primarily related to well managed pasture versus degraded pasture and conventional systems versus no-tillage systems for soybean (Glycine max) and (iv) FAO predictions on agricultural land use and land use changes for the years 2015 and 2030. The land use scenarios were integrated with spatially explicit soils data (SOTER database), climate, potential natural vegetation and land management units using the recently developed GEFSOC soil C modelling system. Results are presented in map, table and graph form for the entire Brazilian Amazon for the current situation (1990 and 2000) and the future (2015 and 2030). Results include soil organic C (SOC) stocks and SOC stock change rates estimated by three methods: (i) the Century ecosystem model, (ii) the Rothamsted C model and (iii) the intergovernmental panel on climate change (IPCC) method for assessing soil C at regional scale. In addition, we show estimated values of above and belowground biomass for native vegetation, pasture and soybean. The results on regional SOC stocks compare reasonably well with those based on mapping approaches. The GEFSOC system provided a means of efficiently handling complex interactions among biotic-edapho-climatic conditions (> 363,000 combinations) in a very large area (similar to 500 Mha) such as the Brazilian Amazon. All of the methods used showed a decline in SOC stock for the period studied; Century and RothC simulated values for 2030 being about 7% lower than those in 1990. Values from Century and RothC (30,430 and 25,000 Tg for the 0-20 cm layer for the Brazilian Amazon region were higher than those obtained from the IPCC system (23,400 Tg in the 0-30 cm layer). Finally; our results can help understand the major biogeochemical cycles that influence soil fertility and help devise management strategies that enhance the sustainability of these areas and thus slow further deforestation. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Globally there have been a number of concerns about the development of genetically modified crops many of which relate to the implications of gene flow at various levels. In Europe these concerns have led the European Union (EU) to promote the concept of 'coexistence' to allow the freedom to plant conventional and genetically modified (GM) varieties but to minimise the presence of transgenic material within conventional crops. Should a premium for non-GM varieties emerge on the market, the presence of transgenes would generate a 'negative externality' to conventional growers. The establishment of maximum tolerance level for the adventitious presence of GM material in conventional crops produces a threshold effect in the external costs. The existing literature suggests that apart from the biological characteristics of the plant under consideration (e.g. self-pollination rates, entomophilous species, anemophilous species, etc.), gene flow at the landscape level is affected by the relative size of the source and sink populations and the spatial arrangement of the fields in the landscape. In this paper, we take genetically modified herbicide tolerant oilseed rape (GM HT OSR) as a model crop. Starting from an individual pollen dispersal function, we develop a spatially explicit numerical model in order to assess the effect of the size of the source/sink populations and the degree of spatial aggregation on the extent of gene flow into conventional OSR varieties under two alternative settings. We find that when the transgene presence in conventional produce is detected at the field level, the external cost will increase with the size of the source area and with the level of spatial disaggregation. on the other hand when the transgene presence is averaged among all conventional fields in the landscape (e.g. because of grain mixing before detection), the external cost will only depend on the relative size of the source area. The model could readily be incorporated into an economic evaluation of policies to regulate adoption of GM HT OSR. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Lactase persistence (LP) is common among people of European ancestry, but with the exception of some African, Middle Eastern and southern Asian groups, is rare or absent elsewhere in the world. Lactase gene haplotype conservation around a polymorphism strongly associated with LP in Europeans (-13,910 C/T) indicates that the derived allele is recent in origin and has been subject to strong positive selection. Furthermore, ancient DNA work has shown that the -13,910*T (derived) allele was very rare or absent in early Neolithic central Europeans. It is unlikely that LP would provide a selective advantage without a supply of fresh milk, and this has lead to a gene-culture coevolutionary model where lactase persistence is only favoured in cultures practicing dairying, and dairying is more favoured in lactase persistent populations. We have developed a flexible demic computer simulation model to explore the spread of lactase persistence, dairying, other subsistence practices and unlinked genetic markers in Europe and western Asia's geographic space. Using data on -13,910*T allele frequency and farming arrival dates across Europe, and approximate Bayesian computation to estimate parameters of interest, we infer that the -13,910*T allele first underwent selection among dairying farmers around 7,500 years ago in a region between the central Balkans and central Europe, possibly in association with the dissemination of the Neolithic Linearbandkeramik culture over Central Europe. Furthermore, our results suggest that natural selection favouring a lactase persistence allele was not higher in northern latitudes through an increased requirement for dietary vitamin D. Our results provide a coherent and spatially explicit picture of the coevolution of lactase persistence and dairying in Europe.
Resumo:
It is generally acknowledged that population-level assessments provide,I better measure of response to toxicants than assessments of individual-level effects. population-level assessments generally require the use of models to integrate potentially complex data about the effects of toxicants on life-history traits, and to provide a relevant measure of ecological impact. Building on excellent earlier reviews we here briefly outline the modelling options in population-level risk assessment. Modelling is used to calculate population endpoints from available data, which is often about Individual life histories, the ways that individuals interact with each other, the environment and other species, and the ways individuals are affected by pesticides. As population endpoints, we recommend the use of population abundance, population growth rate, and the chance of population persistence. We recommend two types of model: simple life-history models distinguishing two life-history stages, juveniles and adults; and spatially-explicit individual-based landscape models. Life-history models are very quick to set up and run, and they provide a great deal or insight. At the other extreme, individual-based landscape models provide the greatest verisimilitude, albeit at the cost of greatly increased complexity. We conclude with a discussion of the cations of the severe problems of parameterising models.
Resumo:
Background: Microtine species in Fennoscandia display a distinct north-south gradient from regular cycles to stable populations. The gradient has often been attributed to changes in the interactions between microtines and their predators. Although the spatial structure of the environment is known to influence predator-prey dynamics of a wide range of species, it has scarcely been considered in relation to the Fennoscandian gradient. Furthermore, the length of microtine breeding season also displays a north-south gradient. However, little consideration has been given to its role in shaping or generating population cycles. Because these factors covary along the gradient it is difficult to distinguish their effects experimentally in the field. The distinction is here attempted using realistic agent-based modelling. Methodology/Principal Findings: By using a spatially explicit computer simulation model based on behavioural and ecological data from the field vole (Microtus agrestis), we generated a number of repeated time series of vole densities whose mean population size and amplitude were measured. Subsequently, these time series were subjected to statistical autoregressive modelling, to investigate the effects on vole population dynamics of making predators more specialised, of altering the breeding season, and increasing the level of habitat fragmentation. We found that fragmentation as well as the presence of specialist predators are necessary for the occurrence of population cycles. Habitat fragmentation and predator assembly jointly determined cycle length and amplitude. Length of vole breeding season had little impact on the oscillations. Significance: There is good agreement between our results and the experimental work from Fennoscandia, but our results allow distinction of causation that is hard to unravel in field experiments. We hope our results will help understand the reasons for cycle gradients observed in other areas. Our results clearly demonstrate the importance of landscape fragmentation for population cycling and we recommend that the degree of fragmentation be more fully considered in future analyses of vole dynamics.
Resumo:
[1] High-elevation forests represent a large fraction of potential carbon uptake in North America, but this uptake is not well constrained by observations. Additionally, forests in the Rocky Mountains have recently been severely damaged by drought, fire, and insect outbreaks, which have been quantified at local scales but not assessed in terms of carbon uptake at regional scales. The Airborne Carbon in the Mountains Experiment was carried out in 2007 partly to assess carbon uptake in western U.S. mountain ecosystems. The magnitude and seasonal change of carbon uptake were quantified by (1) paired upwind-downwind airborne CO2 observations applied in a boundary layer budget, (2) a spatially explicit ecosystem model constrained using remote sensing and flux tower observations, and (3) a downscaled global tracer transport inversion. Top-down approaches had mean carbon uptake equivalent to flux tower observations at a subalpine forest, while the ecosystem model showed less. The techniques disagreed on temporal evolution. Regional carbon uptake was greatest in the early summer immediately following snowmelt and tended to lessen as the region experienced dry summer conditions. This reduction was more pronounced in the airborne budget and inversion than in flux tower or upscaling, possibly related to lower snow water availability in forests sampled by the aircraft, which were lower in elevation than the tower site. Changes in vegetative greenness associated with insect outbreaks were detected using satellite reflectance observations, but impacts on regional carbon cycling were unclear, highlighting the need to better quantify this emerging disturbance effect on montane forest carbon cycling.
The impact of buffer zone size and management on illegal extraction, park protection and enforcement
Resumo:
Many protected areas or parks in developing countries have buffer zones at their boundaries to achieve the dual goals of protecting park resources and providing resource benefits to neighbouring people. Despite the prevalence of these zoning policies, few behavioural models of people’s buffer zone use inform the sizing and management of those zones. This paper uses a spatially explicit resource extraction model to examine the impact of buffer zone size and management on extraction by local people, both legal and illegal, and the impact of that extraction on forest quality in the park’s core and buffer zone. The results demonstrate trade-offs between the level of enforcement, the size of a buffer zone, and the amount of illegal extraction in the park; and describe implications for “enrichment” of buffer zones and evaluating patterns of forest degradation.
Resumo:
Although there is a strong policy interest in the impacts of climate change corresponding to different degrees of climate change, there is so far little consistent empirical evidence of the relationship between climate forcing and impact. This is because the vast majority of impact assessments use emissions-based scenarios with associated socio-economic assumptions, and it is not feasible to infer impacts at other temperature changes by interpolation. This paper presents an assessment of the global-scale impacts of climate change in 2050 corresponding to defined increases in global mean temperature, using spatially-explicit impacts models representing impacts in the water resources, river flooding, coastal, agriculture, ecosystem and built environment sectors. Pattern-scaling is used to construct climate scenarios associated with specific changes in global mean surface temperature, and a relationship between temperature and sea level used to construct sea level rise scenarios. Climate scenarios are constructed from 21 climate models to give an indication of the uncertainty between forcing and response. The analysis shows that there is considerable uncertainty in the impacts associated with a given increase in global mean temperature, due largely to uncertainty in the projected regional change in precipitation. This has important policy implications. There is evidence for some sectors of a non-linear relationship between global mean temperature change and impact, due to the changing relative importance of temperature and precipitation change. In the socio-economic sectors considered here, the relationships are reasonably consistent between socio-economic scenarios if impacts are expressed in proportional terms, but there can be large differences in absolute terms. There are a number of caveats with the approach, including the use of pattern-scaling to construct scenarios, the use of one impacts model per sector, and the sensitivity of the shape of the relationships between forcing and response to the definition of the impact indicator.
Resumo:
Spatio-temporal landscape heterogeneity has rarely been considered in population-level impact assessments. Here we test whether landscape heterogeneity is important by examining the case of a pesticide applied seasonally to orchards which may affect non-target vole populations, using a validated ecologically realistic and spatially explicit agent-based model. Voles thrive in unmanaged grasslands and untreated orchards but are particularly exposed to applied pesticide treatments during dispersal between optimal habitats. We therefore hypothesised that vole populations do better (1) in landscapes containing more grassland and (2) where areas of grassland are closer to orchards, but (3) do worse if larger areas of orchards are treated with pesticide. To test these hyposeses we made appropriate manipulations to a model landscape occupied by field voles. Pesticide application reduced model population sizes in all three experiments, but populations subsequently wholly or partly recovered. Population depressions were, as predicted, lower in landscapes containing more unmanaged grassland, in landscapes with reduced distance between grassland and orchards, and in landscapes with fewer treated orchards. Population recovery followed a similar pattern except for an unexpected improvement in recovery when the area of treated orchards was increased. Outside the period of pesticide application, orchards increase landscape connectivity and facilitate vole dispersal and so speed population recovery. Overall our results show that accurate prediction of population impact cannot be achieved without taking account of landscape structure. The specifics of landscape structure and habitat connectivity are likely always important in mediating the effects of stressors.