75 resultados para Soil physical and chemical characters


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plant root mucilages contain powerful surfactants that will alter the interaction of soil solids with water and ions, and the rates of microbial processes. The lipid composition of maize, lupin and wheat root mucilages was analysed by thin layer chromatography and gas chromatography-mass spectrometry. A commercially available phosphatidylcholine (lecithin), chemically similar to the phospholipid surfactants identified in the mucilages, was then used to evaluate its effects on selected soil properties. The lipids found in the mucilages were principally phosphatidylcholines, composed mainly of saturated fatty acids, in contrast to the lipids extracted from root tissues. In soil at low tension, lecithin reduced the water content at any particular tension by as much as 10 and 50% in soil and acid-washed sand, respectively. Lecithin decreased the amount of phosphate adsorption in soil and increased the phosphate concentration in solution by 10%. The surfactant also reduced net rates of ammonium consumption and nitrate production in soil. These experiments provide the first evidence we are aware of that plant-released surfactants will significantly modify the biophysical environment of the rhizosphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Micromorphological characters of the fruiting bodies, such as ascus-type and hymenial amyloidity, and secondary chemistry have been widely employed as key characters in Ascomycota classification. However, the evolution of these characters has yet not been studied using molecular phylogenies. We have used a combined Bayesian and maximum likelihood based approach to trace character evolution on a tree inferred from a combined analysis of nuclear and mitochondrial ribosomal DNA sequences. The maximum likelihood aspect overcomes simplifications inherent in maximum parsimony methods, whereas the Markov chain Monte Carlo aspect renders results independent of any particular phylogenetic tree. The results indicate that the evolution of the two chemical characters is quite different, being stable once developed for the medullary lecanoric acid, whereas the cortical chlorinated xanthones appear to have been lost several times. The current ascus-types and the amyloidity of the hymenial gel in Pertusariaceae appear to have been developed within the family. The basal ascus-type of pertusarialean fungi remains unknown. (c) 2006 The Linnean Society of London, Biological Journal of the Linnean Society, 2006, 89, 615-626.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trace elements may present an environmental hazard in the vicinity of mining and smelting activities. However, the factors controlling their distribution and transfer within the soil and vegetation systems are not always well defined. Total concentrations of up to 15,195 mg center dot kg (-1) As, 6,690 mg center dot kg(-1) Cu, 24,820 mg center dot kg(-1) Pb and 9,810 mg center dot kg(-1) Zn in soils, and 62 mg center dot kg(-1) As, 1,765 mg center dot kg(-1) Cu, 280 mg center dot kg(-1) Pb and 3,460 mg center dot kg (-1) Zn in vegetation were measured. However, unusually for smelters and mines of a similar size, the elevated trace element concentrations in soils were found to be restricted to the immediate vicinity of the mines and smelters (maximum 2-3 km). Parent material, prevailing wind direction, and soil physical and chemical characteristics were found to correlate poorly with the restricted trace element distributions in soils. Hypotheses are given for this unusual distribution: (1) the contaminated soils were removed by erosion or (2) mines and smelters released large heavy particles that could not have been transported long distances. Analyses of the accumulation of trace elements in vegetation (median ratios: As 0.06, Cu 0.19, Pb 0.54 and Zn 1.07) and the percentage of total trace elements being DTPA extractable in soils (median percentages: As 0.06%, Cu 15%, Pb 7% and Zn 4%) indicated higher relative trace element mobility in soils with low total concentrations than in soils with elevated concentrations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The input to soils made by pollen and its subsequent mineralization has rarely been investigated from a soil microbiological point of view even though the small but significant quantities of C and N in pollen may make an important contribution to nutrient cycling. The relative resistance to decomposition of pollen exines (outer layers) has led to much of the focus of pollen in soil being on its preservation for archaeological and palaeo-ecological purposes. We have examined aspects of the chemical composition and decomposition of pollen from birch (Betula alba) and maize (Zea mays) in soil. The relatively large N contents, small C-to-N ratios and large water-soluble contents of pollen from both species indicated that they would be readily mineralized in soil. When added to soil and incubated at 16 degrees C an amount of C equivalent to 22-26% of the added pollen C was lost as CO2 within 22 days, with the Z. mays pollen decomposing faster. For B. alba pollen, the water-soluble fraction decomposed faster than the whole pollen and the insoluble fraction decomposed more slowly over 22 days. By contrast, there were no significant differences in the decomposition rates of the different fractions from Z. mays pollen. Solid-state C-13 nuclear magnetic resonance (NMR) revealed no gross chemical differences between the pollen of these two species, with strong resonances in the alkyl- and methyl-C region (0-45 p.p.m.) indicative of aliphatic compounds, the O-alkyl-C (60-90 p.p.m.) and the acetal- and ketal-C region (90-110 p.p.m.) indicative of polysaccharides, and the carbonyl-C region indicative of peptides and carboxylic acids. In addition, both pollens gave a small but distinct resonance at 55 p.p.m. attributed to N-alkyl-C. The resonances attributed to polysaccharides were lost completely or substantially reduced after decomposition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Relations between the apparent electrical conductivity of the soil (ECa) and top- and sub-soil physical properties were examined for two arable fields in southern England (Crowmarsh Battle Farms and the Yattendon Estate). The spatial variation of ECa and the soil properties was explored geostatistically. The variogram ranges showed that ECa varied on a similar spatial scale to many of the soil physical properties in both fields. Several features in the map of kriged predictions of ECa were also evident in maps of the soil properties. In addition, the correlation coefficients showed a strong relation between ECa and several soil properties. A moving correlation analysis enabled differences in the relations between ECa and the soil properties to be examined within the fields. The results indicated that relations were inconsistent; they were stronger in some areas than others. A regression of ECa on the principal component scores of the leading components for both fields showed that the first two components accounted for a large proportion of the variance in ECa, whereas the others accounted for little or none. For Crowmarsh topsoil sand and clay, loss on ignition and volumetric water measured in the autumn had large correlations on the first component, and for Yattendon they were large for topsoil sand and clay, and autumn and spring volumetric water. The cross-variograms suggested strong coregionalization between ECa and several soil physical properties; in particular subsoil sand and silt at Crowmarsh, and subsoil sand and clay at Yattendon. The structural correlations from the linear model of coregionalization confirmed the strength of the relations between ECa and the subsoil properties. Nevertheless, no one property was consistently important for both fields. Although a map of ECa can indicate the general patterns of spatial variation in the soil, it is not a substitute for information on soil properties obtained by sampling and analysing the soil. Nevertheless, it could be used to guide further sampling. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The input to soils made by pollen and its subsequent mineralization has rarely been investigated from a soil microbiological point of view even though the small but significant quantities of C and N in pollen may make an important contribution to nutrient cycling. The relative resistance to decomposition of pollen exines (outer layers) has led to much of the focus of pollen in soil being on its preservation for archaeological and palaeo-ecological purposes. We have examined aspects of the chemical composition and decomposition of pollen from birch (Betula alba) and maize (Zea mays) in soil. The relatively large N contents, small C-to-N ratios and large water-soluble contents of pollen from both species indicated that they would be readily mineralized in soil. When added to soil and incubated at 16 degrees C an amount of C equivalent to 22-26% of the added pollen C was lost as CO2 within 22 days, with the Z. mays pollen decomposing faster. For B. alba pollen, the water-soluble fraction decomposed faster than the whole pollen and the insoluble fraction decomposed more slowly over 22 days. By contrast, there were no significant differences in the decomposition rates of the different fractions from Z. mays pollen. Solid-state C-13 nuclear magnetic resonance (NMR) revealed no gross chemical differences between the pollen of these two species, with strong resonances in the alkyl- and methyl-C region (0-45 p.p.m.) indicative of aliphatic compounds, the O-alkyl-C (60-90 p.p.m.) and the acetal- and ketal-C region (90-110 p.p.m.) indicative of polysaccharides, and the carbonyl-C region indicative of peptides and carboxylic acids. In addition, both pollens gave a small but distinct resonance at 55 p.p.m. attributed to N-alkyl-C. The resonances attributed to polysaccharides were lost completely or substantially reduced after decomposition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Commercial dodecylbenzene cable fluid was aged at temperatures of 105 and 135 degrees C in dry oxygen-free nitrogen. In addition, selected samples were aged at 135 degrees C under sealed conditions where air was excluded from the headspace above the oil. A variety of analytical techniques, such as ultra-violet visible and infra-red spectroscopy, acid number and water content measurements, were then used to characterize the aged oils. In addition, their electrical properties were assessed by dielectric spectroscopy. Compared with ageing in air, the ageing rate was reduced significantly and, as expected, no major oxidation peaks were detected in the infrared spectrometer. Significantly, very little absorbance at 680 nm ("red absorbers") was detected in samples aged with copper and, consequentially, no large increases in dielectric loss were recorded within the ageing times considered here. This study compliments previous investigations on cable fluid and 1-phenyldodecane aged in air and show that the same ageing indicators are valid in oils aged under conditions which more closely resemble those found in high voltage plant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A commercial dodecylbenzene (DDB) cable oil was aged at temperatures between 90 and 135 degrees C in air and was analyzed using various analytical techniques including optical and infra-red spectroscopy and dielectric analysis. On ageing, the oil darkened, significant oxidation features were found by infra-red spectroscopy and the acid number, water content and dielectric loss all increased. Ageing in the presence of paper or aluminum did not affect the ageing process, whereas ageing was significantly modified by the presence of copper. An absorption at 680 nm ("red absorbers") was detected by ultra-violet/visible spectroscopy followed by the production of an opaque precipitate. A reaction between copper and the acid generated on ageing is thought to produce copper carboxylates, and X-ray fluorescence confirmed that copper was indeed present in both the aged oil and the precipitate. Significantly, once red absorbers were detected, the dielectric loss increased to catastrophically high values and, therefore, the appearance of these compounds may serve as a useful diagnostic indicator. The development of acidity on ageing appears to be key in initiating the destructive copper conversion reaction and hence the control of oil acidity may be key to prolonging the life of DDB cable oils.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The linear isomer of dodecylbenzene (DDB), 1-phenyldodecane, was aged at temperatures of 105 and 135 degrees C in air and the resultant products were analyzed using a range of analytical techniques. On ageing, the 1-phenyldodecane darkened, the acid number, dielectric loss and water content increased and significant oxidation peaks were detected in the infrared spectrum. When aged in the presence of copper, a characteristic peak at 680 nm was also detected by UV/visible spectroscopy but, compared with previous studies of a cable-grade DDB, the strength of this peak was much increased and no appreciable precipitate formation occurred. At the same time, very high values of dielectric loss were recorded. On ageing in the absence of copper, an unusually strong infrared carbonyl band was seen, which correlates well with the detection of dodecanophenone by gas chromatography / mass spectrometry and nuclear magnetic resonance spectroscopy. It was therefore concluded that the ageing process proceeds via the initial production of aromatic ketones, which may then be further oxidized to carboxylic acids. In the presence of copper, these oxidation products are present in lower quantities, most of these oxidation products being combined with the copper present in the oil to give copper carboxylates. The behavior is described in terms of a complex autoxidation mechanism, in which copper acts as both an oxidizing and a reducing agent, depending on its oxidation state and, in particular, promotes elimination via the oxidation of intermediate alkyl radical species to carbocations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent studies have illustrated the effects of cis-9, trans-11 conjugated linoleic acid (CLA) on human health. Ruminant-derived meat, milk and dairy products are the predominant sources of cis-9, trans-11 CLA in the human diet. This study evaluated the processing properties, texture, storage characteristics, and organoleptic properties of UHT milk, Caerphilly cheese, and butter produced from a milk enriched to a level of cis-9, trans-11 CLA that has been shown to have biological effects in humans. Forty-nine early-lactation Holstein-British Friesian cows were fed total mixed rations containing 0 (control) or 45 g/kg ( on dry matter basis) of a mixture (1:2 wt/wt) of fish oil and sunflower oil during two consecutive 7-d periods to produce a control and CLA-enhanced milk, respectively. Milk produced from cows fed the control and fish and sunflower oil diets contained 0.54 and 4.68 g of total CLA/100 g of fatty acids, respectively. Enrichment of CLA in raw milk from the fish and sunflower oil diet was also accompanied by substantial increases in trans C18:1 levels, lowered C18: 0, cis-C18:1, and total saturated fatty acid concentrations, and small increases in n-3 polyunsaturated fatty acid content. The CLA-enriched milk was used for the manufacture of UHT milk, butter, and cheese. Both the CLA-enhanced butter and cheese were less firm than control products. Although the sensory profiles of the CLA-enriched milk, butter, and cheese differed from those of the control products with respect to some attributes, the overall impression and flavor did not differ. In conclusion, it is feasible to produce CLA-enriched dairy products with acceptable storage and sensory characteristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is currently an increased interest of Government and Industry in the UK, as well as at the European Community level and International Agencies (i.e. Department of Energy, American International Energy Agency), to improve the performance and uptake of Ground Coupled Heat Pumps (GCHP), in order to meet the 2020 renewable energy target. A sound knowledge base is required to help inform the Government Agencies and advisory bodies; detailed site studies providing reliable data for model verification have an important role to play in this. In this study we summarise the effect of heat extraction by a horizontal ground heat exchanger (installed at 1 m depth) on the soil physical environment (between 0 and 1 m depth) for a site in the south of the UK. Our results show that the slinky influences the surrounding soil by significantly decreasing soil temperatures. Furthermore, soil moisture contents were lower for the GCHP soil profile, most likely due to temperature-gradient related soil moisture migration effects and a decreased hydraulic conductivity, the latter as a result of increased viscosity (caused by the lower temperatures for the GCHP soil profile). The effects also caused considerable differences in soil thermal properties. This is the first detailed mechanistic study conducted in the UK with the aim to understand the interactions between the soil, horizontal heat exchangers and the aboveground environment. An increased understanding of these interactions will help to achieve an optimum and sustainable use of the soil heat resources in the future. The results of this study will help to calibrate and verify a simulation model that will provide UK-wide recommendations to improve future GCHP uptake and performance, while safeguarding the soil physical resources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemical methods to predict the bioavailable fraction of organic contaminants are usually validated in the literature by comparison with established bioassays. A soil spiked with polycyclic aromatic hydrocarbons (PAHs) was aged over six months and subjected to butanol, cyclodextrin and tenax extractions as well as an exhaustive extraction to determine total PAH concentrations at several time points. Earthworm (Eisenia fetida) and rye grass root (Lolium multiflorum) accumulation bioassays were conducted in parallel. Butanol extractions gave the best relationship with earthworm accumulation (r2 ≤ 0.54, p ≤ 0.01); cyclodextrin, butanol and acetone–hexane extractions all gave good predictions of accumulation in rye grass roots (r2 ≤ 0.86, p ≤ 0.01). However, the profile of the PAHs extracted by the different chemical methods was significantly different (p < 0.01) to that accumulated in the organisms. Biota accumulated a higher proportion of the heavier 4-ringed PAHs. It is concluded that bioaccumulation is a complex process that cannot be predicted by measuring the bioavailable fraction alone. The ability of chemical methods to predict PAH accumulation in Eisenia fetida and Lolium multiflorum was hindered by the varied metabolic fate of the different PAHs within the organisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As zinc (Zn) is both an essential trace element and potential toxicant, the effects of Zn fixation in soil are of practical significance. Soil samples from four field sites amended with ZnSO4 were used to investigate ageing of soluble Zn under field conditions over a 2-year period. Lability of Zn measured using 65Zn radioisotope dilution showed a significant decrease over time and hence evidence of Zn fixation in three of the four soils. However, 0.01 M CaCl2 extractions and toxicity measurements using a genetically modified lux-marked bacterial biosensor did not indicate a decrease in soluble/bioavailable Zn over time. This was attributed to the strong regulatory effect of abiotic properties such as pH on these latter measurements. These results also showed that Zn ageing occurred immediately after Zn spiking, emphasising the need to incubate freshly spiked soils before ecotoxicity assessments. Ageing effects were detected in Zn-amended field soils using 65Zn isotopic dilution as a measure of lability, but not with either CaCl2 extractions or a lux-marked bacterial biosensor.